OPTIMISM AND OVERCONFIDENCE

Ludvig Sinander University of Oxford

6 June 2023

paper: arXiv.org/abs/2304.08343

Motivation

Wrong beliefs are pervasive: vast lit in psychology & economics.

Two distinct (but oft-conflated) senses of 'wrong':

- overconfidence: overestimate ability to influence outcomes
- optimism: overestimate chances of 'good' outcomes

Motivation

Wrong beliefs are pervasive: vast lit in psychology & economics.

Two distinct (but oft-conflated) senses of 'wrong':

- overconfidence: overestimate ability to influence outcomes
- optimism: overestimate chances of 'good' outcomes

Seek to define, distinguish & characterise these.

- behavioural, model-free definitions
- characterisation in the canonical model of an effort-influencing agent: the moral-hazard (MH) model

Prior question: how does the MH model relate to behaviour?

- how does it restrict choice behaviour? (testable axioms)
- can its parameters be recovered from choice behaviour?

This paper

Data: choice between contracts.

Proposition 1: charac'n of MH model's empirical content (six axioms exhaust its testable implications).

Proposition 2: charac'n of extent to which MH model's parameters can be recovered from data.

This paper

Data: choice between contracts.

Proposition 1: charac'n of MH model's empirical content (six axioms exhaust its testable implications).

Proposition 2: charac'n of extent to which MH model's parameters can be recovered from data.

Definitions $\begin{cases} \text{of 'more confident than'} \\ \text{of 'more optimistic than'} \end{cases}$

Proposition 3: charac'n of parameter shifts in MH model that increase confidence.

Proposition 4: charac'n of parameter shifts in MH model that increase optimism.

Method: establish link with 'variational' model, borrow results.

Environment

Convex set $\Pi \subseteq \mathbf{R}$ of possible levels of remuneration.

Finite set S of possible realisations of output.

A <u>contract</u> is a map $w: S \to \Delta(\Pi)$.

 $(\Delta(\Pi) = \text{set of all finite-support probabilities on } \Pi.)$

Write W for the set of all contracts.

Interpretation:

- agent's pay $\pi \in \Pi$ can be contingent on output $s \in S$
- 'output' can be any contractible signal/outcome
- pay can be random conditional on output (for simplicity)

Definitions and conventions

Elements of $\Delta(\Pi)$ are called <u>random remunerations</u>.

A contract w is constant iff w(s) = w(s') for all $s \in S$.

Convention: identify each constant contract $(\in W)$

with the random remuneration $(\in \Delta(\Pi))$

at which it is constant.

Definitions and conventions

Elements of $\Delta(\Pi)$ are called <u>random remunerations</u>.

A contract w is <u>constant</u> iff w(s) = w(s') for all $s \in S$.

Convention: identify each constant contract $(\in W)$

with the random remuneration $\ (\in \Delta(\Pi))$

at which it is constant.

Convention: extend any (utility) function $u: \Pi \to \mathbf{R}$ to an (expected-utility) function $\Delta(\Pi) \to \mathbf{R}$ via $u(x) \coloneqq \int_{\Pi} u(\pi) x(\mathrm{d}\pi) \quad \forall x \in \Delta(\Pi).$

Throughout, fix arbitrary $\pi_0 < \pi_1$ in Π . Call a (utility) function $u: \Pi \to \mathbf{R}$ such that $u(\pi_0) \neq u(\pi_1)$ normalised iff $\{u(\pi_0), u(\pi_1)\} = \{0, 1\}$.

All sets $\subseteq \mathbb{R}^n$ (incl. $\Delta(S)$) have the Borel σ -algebra.

The standard moral-hazard model

Standard MH model has four parameters:

- a compact convex (effort) set $E \subseteq \mathbf{R}^n$
- a grounded¹ and lsc² (cost) function $C: E \to \mathbf{R}_+$
- a continuous (belief) map $e \mapsto P_e$ that carries E into $\Delta(S)$
- a strictly \nearrow & normalised (utility) function $u:\Pi\to\mathbf{R}$

¹Viz. $\inf_{e \in E} C(e) = 0$.

²That's 'lower semi-continuous'.

The standard moral-hazard model

Standard MH model has four parameters:

- a compact convex (effort) set $E \subseteq \mathbf{R}^n$
- a grounded¹ and lsc² (cost) function $C: E \to \mathbf{R}_+$
- a continuous (belief) map $e \mapsto P_e$ that carries E into $\Delta(S)$
- a strictly \nearrow & normalised (utility) function $u:\Pi\to\mathbf{R}$

Under contract $w \in W$, agent chooses effort $e \in E$ to max—expected utility from remuneration—net of effort cost:

$$\sup_{e \in E} \left[-C(e) + \sum_{s \in S} u(w(s)) P_e(s) \right]$$

¹Viz. $\inf_{e \in E} C(e) = 0$.

²That's 'lower semi-continuous'.

The standard moral-hazard model

Standard MH model has four parameters:

- a compact convex (effort) set $E \subseteq \mathbf{R}^n$
- a grounded¹ and lsc² (cost) function $C: E \to \mathbf{R}_+$
- a continuous (belief) map $e \mapsto P_e$ that carries E into $\Delta(S)$
- a strictly \nearrow & normalised (utility) function $u:\Pi\to\mathbf{R}$

Under contract $w \in W$, agent chooses effort dist'n $\mu \in \Delta(E)$ to max—expected utility from remuneration—net of effort cost:

$$\sup_{\mu \in \Delta(E)} \int_{E} \left[-C(e) + \sum_{s \in S} u(w(s)) P_{e}(s) \right] \mu(\mathrm{d}e)$$

(Randomising may be strictly optimal.)

¹Viz. $\inf_{e \in E} C(e) = 0$.

²That's 'lower semi-continuous'.

Data: preferences over contracts

Agent's preference over contracts: binary relation \succeq on W.

This is (in principle) data: choice between contracts.

 \succeq is a MH preference iff there are parameters $(E, C, e \mapsto P_e, u)$ (which satisfy the required properties, see last slide) such that $w \succeq w'$ iff

$$\sup_{\mu \in \Delta(E)} \int_{E} \left[-C(e) + \sum_{s \in S} u(w(s)) P_{e}(s) \right] \mu(\mathrm{d}e)$$

$$\geq \sup_{\mu \in \Delta(E)} \int_{E} \left[-C(e) + \sum_{s \in S} u(w'(s)) P_{e}(s) \right] \mu(\mathrm{d}e).$$

Assumption: no data besides \succeq . (Effort is unobservable.)

Can break agent's problem into:

- (1) choose which output distribution $p \in \Delta(S)$ to produce
- (2) find least-cost way of producing p: search among all $\mu \in \Delta(E)$ such that $\int_E P_e \mu(\mathrm{d}e) = p$.

Can break agent's problem into:

- (1) choose which output distribution $p \in \Delta(S)$ to produce
- (2) find least-cost way of producing p: search among all $\mu \in \Delta(E)$ such that $\int_E P_e \mu(\mathrm{d}e) = p$.

Solving (2) yields least cost of producing each $p \in \Delta(S)$:

$$c(p) := \inf_{\substack{\mu \in \Delta(E): \\ \int_E P_e \mu(\mathrm{d}e) = p}} \int_E C(e)\mu(\mathrm{d}e),$$

where $c(p) = \infty$ if the constraint set is empty.

Can break agent's problem into:

- (1) choose which output distribution $p \in \Delta(S)$ to produce
- (2) find least-cost way of producing p: search among all $\mu \in \Delta(E)$ such that $\int_E P_e \mu(\mathrm{d}e) = p$.

Solving (1) yields value of contract $w \in W$:

$$\sup_{\mu \in \Delta(E)} \int_{E} \left[-C(e) + \sum_{s \in S} u(w(s)) P_{e}(s) \right] \mu(\mathrm{d}e)$$
$$= \sup_{p \in \Delta(S)} \left[-c(p) + \sum_{s \in S} u(w(s)) p(s) \right].$$

Can break agent's problem into:

- (1) choose which output distribution $p \in \Delta(S)$ to produce
- (2) find least-cost way of producing p: search among all $\mu \in \Delta(E)$ such that $\int_E P_e \mu(\mathrm{d}e) = p$.

Value of
$$w = \sup_{p \in \Delta(S)} \left[-c(p) + \sum_{s \in S} u(w(s))p(s) \right]$$

Only parameters that matter: (c, u).

Henceforth use the parsimonious parametrisation: just (c, u).

The power of parsimony

Parsimonious parametrisation (c, u) is very well-behaved:

Lemma: relation \succeq is a MH preference iff there is

- a grounded, <u>convex and lsc</u> function $c: \Delta(S) \to [0, \infty]$ and
- a strictly \nearrow and normalised (utility) function $u:\Pi\to\mathbf{R}$ such that $w\succeq w'$ iff

$$\max_{p \in \Delta(S)} \left[-c(p) + \sum_{s \in S} u(w(s))p(s) \right]$$

$$\geq \max_{p \in \Delta(S)} \left[-c(p) + \sum_{s \in S} u(w'(s))p(s) \right].$$

Call (c, u) a parsimonious (MH) representation of \succeq .

The power of parsimony: necessity

Already showed value of
$$w = \sup_{p \in \Delta(S)} \left[-c(p) + \sum_{s \in S} u(w(s))p(s) \right]$$

where
$$c(q) \coloneqq \inf_{\substack{\mu \in \Delta(E): \\ \int_E P_e \mu(\mathrm{d}e) = q}} \int_E C(e) \mu(\mathrm{d}e)$$
 for each $q \in \Delta(S)$.

<u>c lsc:</u> since C lsc and $e \mapsto P_e$ continuous.

The power of parsimony: necessity

Already showed value of
$$w = \max_{p \in \Delta(S)} \left[-c(p) + \sum_{s \in S} u(w(s))p(s) \right]$$

where
$$c(q) \coloneqq \inf_{\substack{\mu \in \Delta(E): \\ \int_E P_e \mu(\mathrm{d}e) = q}} \int_E C(e) \mu(\mathrm{d}e)$$
 for each $q \in \Delta(S)$.

 \underline{c} lsc: since C lsc and $e \mapsto P_e$ continuous. \Longrightarrow can replace 'sup' with 'max'.

The power of parsimony: necessity

Already showed value of
$$w = \max_{p \in \Delta(S)} \left[-c(p) + \sum_{s \in S} u(w(s))p(s) \right]$$

where
$$c(q) := \inf_{\substack{\mu \in \Delta(E): \\ \int_E P_e \mu(\mathrm{d}e) = q}} \int_E C(e) \mu(\mathrm{d}e)$$
 for each $q \in \Delta(S)$.

 \underline{c} lsc: since C lsc and $e \mapsto P_e$ continuous. \Longrightarrow can replace 'sup' with 'max'.

\underline{c} convex: by construction.

Given $q, q' \in \Delta(S)$, let $\mu, \mu' \in \Delta(E)$ be least-cost effort dist'ns.

Effort dist'n
$$\alpha \mu + (1 - \alpha)\mu'$$

$$\begin{cases} \text{produces} & \alpha q + (1 - \alpha)q' \\ \text{costs} & \alpha c(q) + (1 - \alpha)c(q'). \end{cases}$$

So
$$c(\alpha q + (1 - \alpha)q') \le \alpha c(q) + (1 - \alpha)c(q')$$
.

The power of parsimony: sufficiency

Suppose \succeq admits parsimonious MH representation (c, u).

- $\text{ let } E \coloneqq \Delta(S)$
- define $C: E \to \mathbf{R}_+$ by $C \equiv c$
- let $e \mapsto P_e$ be the identity $(P_p = p \text{ for each } p \in \Delta(S))$

The MH model $(E, C, e \mapsto P_e, u)$ represents \succeq : $\forall w \in W$,

$$\max_{p \in \Delta(S)} \left[-c(p) + \sum_{s \in S} u(w(s))p(s) \right]$$

$$= \sup_{\mu \in \Delta(E)} \int_{E} \left[-C(e) + \sum_{s \in S} u(w(s))P_{e}(s) \right] \mu(\mathrm{d}e).$$

So \succeq is a MH preference.

QED

Four testable implications of the MH model

- **Axiom 1:** \succeq is complete and transitive.
- **Axiom 2:** For any prizes $\pi, \pi' \in \Pi$, $\pi > \pi'$ implies $\pi \succ \pi'$.
- **Axiom 3:** If two contracts $w, w' \in W$ satisfy $w(s) \succeq w'(s)$ for every output level $s \in S$, then $w \succeq w'$.
- **Axiom 4:** For any contracts $w, w', w'' \in W$, the sets $\{\alpha \in [0,1] : \alpha w + (1-\alpha)w' \succeq w''\}$ and $\{\alpha \in [0,1] : w'' \succeq \alpha w + (1-\alpha)w'\}$ are closed.

More testable implications of the MH model

Quasiconvexity: For any contracts $w, w' \in W$ such that $w \succeq w' \succeq w$, $w \succeq \alpha w + (1 - \alpha)w'$ for all $\alpha \in (0, 1)$.

Interpretation: aversion to 'mixing' contracts.

More testable implications of the MH model

Quasiconvexity: For any contracts $w, w' \in W$ such that $w \succeq w' \succeq w$, $w \succeq \alpha w + (1 - \alpha)w'$ for all $\alpha \in (0, 1)$.

Interpretation: aversion to 'mixing' contracts.

MMR Independence: For any $w, w' \in W$ and $\alpha \in (0, 1)$,

$$\alpha w + (1 - \alpha)y \succeq \alpha w' + (1 - \alpha)y \quad \text{for some } y \in \Delta(\Pi)$$

$$\Rightarrow \quad \alpha w + (1 - \alpha)y' \succeq \alpha w' + (1 - \alpha)y' \quad \text{for any } y' \in \Delta(\Pi).$$

One interpretation: absence of income effects.

Empirical content of the MH model

Proposition 1: A relation \succeq on W is a MH preference iff it satisfies Axioms 1–4, MMR Independence, and Quasiconvexity.

Empirical content of the MH model

Proposition 1: A relation \succeq on W is a MH preference iff it satisfies Axioms 1–4, MMR Independence, and Quasiconvexity.

<u>Proof:</u> borrow from Maccheroni–Marinacci–Rustichini's (2006) axiomatisation of 'variational' preferences. Similar to MH, except malevolent Nature chooses effort (and bears the cost). Behavioural difference: Quasiconvexity vs. Quasiconcavity.

Identification of the MH model

 \succeq <u>unbounded</u> \simeq utility function unbounded above and below.³

Proposition 2: Each unbounded MH preference admits exactly one parsimonious representation.

Proof: borrow from MMR again.

³Real definition: there are $x \succ y$ in $\Delta(\Pi)$ such that for any $\alpha \in (0,1)$, we may find $z, z' \in \Delta(\Pi)$ that satisfy $y \succ \alpha z + (1-\alpha)x$ and $\alpha z' + (1-\alpha)y \succ x$.

Identification of the MH model

 \succeq <u>unbounded</u> \simeq utility function unbounded above and below.³

Proposition 2: Each unbounded MH preference admits exactly one parsimonious representation.

<u>Proof:</u> borrow from MMR again.

 ${\it Good news:} \quad {\it parsimonious MH model fully identified}.$

Bad news: standard MH model not identified.

Can't recover $(E, C, e \mapsto P_e)$.

More data may or may not help:

- not helpful: observing the produced output dist'n
- helpful: observing chosen effort

³Real definition: there are $x \succ y$ in $\Delta(\Pi)$ such that for any $\alpha \in (0,1)$, we may find $z,z' \in \Delta(\Pi)$ that satisfy $y \succ \alpha z + (1-\alpha)x$ and $\alpha z' + (1-\alpha)y \succ x$.

Relative confidence

Confident agent: one who believes she can significantly influence the distribution of output.

In terms of choice: greater appetite for non-constant contracts.

Definition: \succeq is more confident than \succeq' iff for any $w \in W$ and $x \in \Delta(\Pi)$, $w \succeq'(\succ') x \implies w \succeq(\succ) x$.

Relative confidence in the MH model

Proposition 3: Let \succeq and \succeq' be MH preferences, with parsimonious rep'ns (c,u) and (c',u'). Then \succeq is more confident than \succeq' iff u=u' and $c \leq c'$.

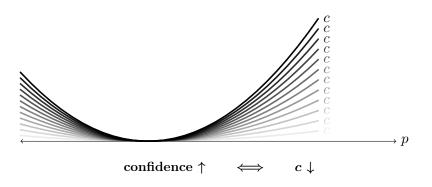
$$\iff$$
 (c,u) is more confident than (c',u') iff $u=u'$ and $\{p\in\Delta(S):c(p)\leq k\}\supseteq\{p\in\Delta(S):c'(p)\leq k\}$ for every $k\geq0$.

<u>Proof:</u> Borrow from MMR again!

Relative confidence in the MH model: picture

Two output levels: $S = \{\text{failure}, \text{success}\}.$

Can view each $p \in \Delta(S)$ as one-dimensional: $p \equiv \Pr(\text{success})$.



In the MH model, confidence is about <u>vertical</u> shifts of c.

Relative optimism

Henceforth $S = \{s_1, s_2, \dots, s_{|S|}\}$, where $s_1 < s_2 < \dots < s_{|S|}$.

Optimistic agent: one who expects output to be high.

In terms of choice: greater appetite for steeply \nearrow contracts.

Relative optimism

Henceforth $S = \{s_1, s_2, \dots, s_{|S|}\}$, where $s_1 < s_2 < \dots < s_{|S|}$.

Optimistic agent: one who expects output to be high.

In terms of choice: $\,$ greater appetite for steeply \nearrow contracts.

Appropriate sense of 'steeply' adjusts for risk attitude: steepness of $u \circ w$ (in utils), not of w (in dollars).

Definition: \succeq is more optimistic than \succeq' iff they have the same (EU) risk attitude u, and for any $w, w' \in W$ such that $u \circ w - u \circ w'$ is \nearrow , $w \succeq'(\succ') w' \implies w \succeq(\succ) w'$.

Up-shiftedness

Let $c, c' : \Delta(S) \to [0, \infty]$ be grounded, convex and lsc.

$$c \ \text{ is } \underline{\text{up-shifted from}} \ c' \ \text{iff} \quad \forall p,p' \in \Delta(S), \quad \exists q,q' \in \Delta(S) \quad \text{s.t.}$$

- p FOSD q'
- -q FOSD p'
- $\frac{1}{2}p + \frac{1}{2}p' = \frac{1}{2}q + \frac{1}{2}q'$
- $-c(q) + c'(q') \le c(p) + c'(p').$

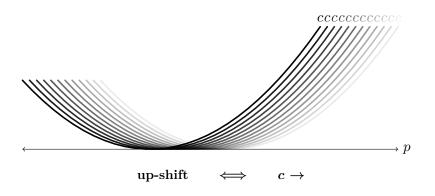
Idea: FOSD-higher output dist'ns are relatively cheaper under c than under c'.

Concretely (Dziewulski–Quah, 2024): c is up-shifted from c' iff for every contract $w \in W$ and strictly \nearrow utility $u : \Pi \to \mathbf{R}$, optimal 'effort' $p \in \Delta(S)$ is FOSD-higher in MH model (c, u) than in MH model (c', u).

Up-shiftedness: picture

Two output levels: $S = \{\text{failure}, \text{success}\}.$

Can view each $p \in \Delta(S)$ as one-dimensional: $p \equiv \Pr(\text{success})$.



Up-shifting is about <u>horizontal</u> shifts.

Up-shiftedness: a sufficient condition

Let
$$L_k := \{ p \in \Delta(S) : c(p) \le k \}$$

 $L'_k := \{ p \in \Delta(S) : c'(p) \le k \}.$

Obs'n: Let $c, c' : \Delta(S) \to [0, \infty]$ be grounded, convex and lsc. If c is up-shifted from c', then for every $k \ge 0$,

for each $p \in L_k$, p FOSD p' for some $p' \in L'_k$, and for each $p' \in L'_k$, p FOSD p' for some $p \in L_k$.

Intuitively: the set L_k is 'FOSD-higher' than the set L'_k .

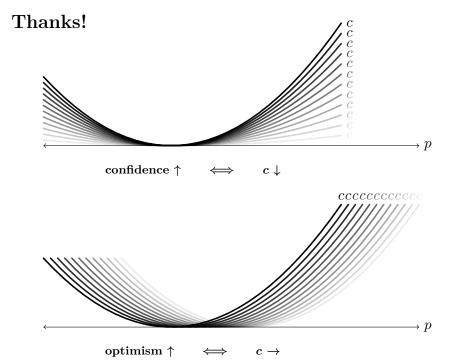
Proof of the first half: fix $k \ge 0$ and $p \in L_k$. c' grounded and lsc $\Longrightarrow \exists p' \in \Delta(S)$ such that c'(p') = 0. By up-shiftedness, $\exists q, q' \in \Delta(S)$ such that p FOSD q' and $c'(q') \le c(q) + c'(q') \le c(p) + c'(p') \le k \Longrightarrow q' \in L'_k$. **QED**

Relative optimism in the MH model

```
Proposition 4: Let \succeq and \succeq' be MH preferences, with parsimonious rep'ns (c, u) and (c', u'). Then \succeq is more optimistic than \succeq' iff u = u' and c is up-shifted from c'.
```

 \implies in MH model, optimism shifts are <u>horizontal</u> shifts of c.

<u>Proof:</u> Borrow from Dziewulski and Quah (2024).



References I

- Dziewulski, P., & Quah, J. K.-H. (2024). Comparative statics with linear objectives: Normality, complementarity, and ranking multi-prior beliefs. *Econometrica*, 92(1), 167–200. https://doi.org/10.3982/ECTA19738
- Maccheroni, F., Marinacci, M., & Rustichini, A. (2006). Ambiguity aversion, robustness, and the variational representation of preferences. *Econometrica*, 74(6), 1447–1498.

https://doi.org/10.1111/j.1468-0262.2006.00716.x