DISCUSSION OF STRACK & YANG, 'PRIVACY-PRESERVING SIGNALS'

Ludvig Sinander University of Oxford

Theory @ Penn State 8 December 2023

1

In a nutshell

Question: given random variables $\boldsymbol{\omega}$ and $\boldsymbol{\theta} \equiv f(\boldsymbol{\omega})$ what information can be conveyed about $\boldsymbol{\omega}$ without conveying any information about $\boldsymbol{\theta}$?

Answer: information about $(\boldsymbol{\omega}|\boldsymbol{\theta})$ -quantiles.

Interpretations: privacy, avoiding 'disparate impact', ...

More abstractly: how & to what extent can info be 'orthogonalised' / 'factorised'? (important in e.g. dynamic mech design)

Setting

Probability space $(\Omega, \mathcal{F}, \mathbf{P})$ standard Borel

- random variable denoted $\boldsymbol{\omega}$ (typical realisation $\boldsymbol{\omega} \in \Omega$) formally $\boldsymbol{\omega} : \Omega \to \Omega$ given by $\boldsymbol{\omega}(\boldsymbol{\omega}) = \boldsymbol{\omega} \quad \forall \boldsymbol{\omega} \in \Omega$
- captures all 'fundamental' uncertainty (generally multi-dimensional)
- interpret as cross-sectional heterogeneity

Collection $\mathcal{P} \subseteq \mathcal{F}$ called 'privacy sets'

- interpret each $P \in \mathcal{P}$ as yes/no question ('Swedish?') answer = 'yes' if $\omega \in P$, = 'no' otherwise
- non-binary questions ('Swedish, Danish or other?') captured by collections of binary questions (e.g. 'Swedish or not?' & 'Danish or not?')
- wlog assume \mathcal{P} a σ -algebra

Signals

Signal: random variable s (typical realisation s) defined on (rich) <u>extended</u> probability space ($\Omega \times \Omega', \mathcal{F} \times \mathcal{F}', Pr$) (Authors describe by Blackwell experiment (S, π) .)

Signals convey info about $~\omega$

(posterior $Pr(\boldsymbol{\omega} \in E | \boldsymbol{s} = s)$ generally varies with s)

Signal s is privacy-preserving (PP) iff s measurable w.r.t. $\mathcal{P} \times \mathcal{F}'$ $\iff \Pr(P|s=s) = \mathbf{P}(P) \quad \forall s, \ \forall P \in \mathcal{P}$ \iff conveys no info about the questions \mathcal{P} .

Equivalent approach

Let f be 'question-answering function' for \mathcal{P} : $\forall \omega, f(\omega)$ is list of answers (yes/no) to each question in \mathcal{P} (for measure-theoretic niceties [actually very simple], see Prop 1)

Define random variable $\boldsymbol{\theta} \coloneqq f(\boldsymbol{\omega}) \quad \forall \boldsymbol{\omega} \in \Omega$

Evidently s PP iff independent of θ \iff $\Pr(\theta \in T | s = s) = \Pr(\theta \in T) \quad \forall s, \forall \text{ meas'ble } T$ \iff conveys no info about the questions \mathcal{P} .

Can go the other way, too: if start with f, let $\mathcal{P} \coloneqq \sigma(\boldsymbol{\theta})$ (generated σ -algebra). Approaches equivalent.

Main interpretation

- $\boldsymbol{\omega} = (\boldsymbol{\eta}, \boldsymbol{\theta})$ is vector of characteristics.
- $\boldsymbol{\theta}$ are protected or private characteristics.

Garbling preserves PP

s garbling of s' & s' PP \implies s PP.

Simplifying assumptions

For simplicity, assume

 $- \Omega \subseteq \mathbf{R}$

- condition'l CDF $\omega \mapsto F(\omega|\theta) \coloneqq \Pr(\omega \le \omega | \theta = \theta)$ is <u>continuous</u> $\forall \theta$

Former is 'wlog', but $F(\cdot|\theta)$ hard to interpret in general.

The (conditional) quantile signal

Conditional quantile: $\boldsymbol{q} \coloneqq F(\boldsymbol{\omega}|\boldsymbol{\theta})$. $(\boldsymbol{q}|\boldsymbol{\theta} = \boldsymbol{\theta}) \sim U([0,1]) \quad \forall \boldsymbol{\theta}$.

'(Conditional) quantile signal': s = q.

- 'applicant is in qth quantile of <u>her group</u>' ('her group' = θ , but that's kept secret)
- dist'n $(s|\theta = \theta)$ doesn't vary with $\theta \implies s$ PP.

PP signal 2: $\boldsymbol{s} = \begin{cases} \text{'below median of her group'} & \text{if } \boldsymbol{q} \leq 1/2 \\ \text{'above median of her group'} & \text{if } \boldsymbol{q} > 1/2 \end{cases}$

– garbling of
$$q \implies s$$
 PP.

Distributions of posterior means

What matters about a signal is induced random posterior belief. In many applications, only mean of posterior belief matters. Random posterior mean induced by signal $s: \mu = \mathbf{E}(\boldsymbol{\omega}|s)$.

Well-known: for a CDF G, the following are equivalent:

$$-\mathbf{E}(\boldsymbol{\omega}|\boldsymbol{s}) \sim G$$
 for some signal \boldsymbol{s}

$$- G \leq_{\mathrm{cvx}} F$$

where F is CDF of $\boldsymbol{\omega}$ $F(\boldsymbol{\omega}) \coloneqq \mathbf{P}(\boldsymbol{\omega} < \boldsymbol{\omega})$.

Theorem 2. Under simplifying assumptions, for a CDF G, the following are equivalent:

- $-\mathbf{E}(\boldsymbol{\omega}|\boldsymbol{s}) \sim G$ for some PP signal \boldsymbol{s}
- $-G <_{curv} \overline{F}$

where \bar{F} is CDF of $\bar{\mu} = \mathbf{E}(\boldsymbol{\omega}|\boldsymbol{q})$ $\bar{F}(\mu) \coloneqq \mathbf{P}(\bar{\mu} \leq \mu)$.

Corollary: factorisation

Given $\mu \in \mathbf{R}$, let $\mathcal{D}_{\mu} = \{\text{CDFs with mean } \mu\}$. Fact: \mathcal{D}_{μ} ordered by \leq_{cvx} is a lattice. Proof: for any $G \in \mathcal{D}_{\mu}$, write $C_G(\omega) \coloneqq \int_0^{\omega} G \quad \forall \omega \in \Omega$. Well-known: $G \leq_{\text{cvx}} H$ iff $C_G \leq C_H$ pointwise. Well-known: {functions} ordered by 'pointwise inequality' is a lattice $\begin{pmatrix} \wedge = \text{pointwise minimum}, \\ \vee = \text{pointwise maximum} \end{pmatrix}$.

Corollary: factorisation

Given $\mu \in \mathbf{R}$, let $\mathcal{D}_{\mu} = \{ \text{CDFs with mean } \mu \}.$

Fact: \mathcal{D}_{μ} ordered by \leq_{cvx} is a lattice.

Fact + Th'm 2: simple factorisation of posterior-mean dist'ns into PP & privacy-violating components.

Namely: for any CDF G that is feasible $(G \leq_{cvx} F)$,

- 'PP component': $G \wedge_{\text{cvx}} \overline{F}$, the most informative/dispersed posterior-mean dist'n that is less informative/dispersed than G& induced by a <u>PP</u> signal.
- 'privacy-violating component': remaining variation in G.

More PP signals

Conditional quantile: $q \coloneqq F(\boldsymbol{\omega}|\boldsymbol{\theta})$. $(q|\boldsymbol{\theta} = \boldsymbol{\theta}) \sim U([0,1]) \quad \forall \boldsymbol{\theta}$.

PP signal 3:
$$(\boldsymbol{s}|\boldsymbol{q}=q) \sim U\left(\left\{\frac{q}{n}, \frac{q}{n}+\frac{1}{n}, \dots, \frac{q}{n}+\frac{n-1}{n}\right\}\right)$$

- can recover q from s: $q = ns \mod 1$

$$\implies$$
 s Blackwell-equiv. to q \implies s PP
- $(s|\theta = \theta) \sim U([0,1]) \quad \forall \theta$

PP signal 4: $(\boldsymbol{s}|\boldsymbol{q}=q) \sim U(\Phi^{-1}(q))$, where $\Phi: [0,1] \to [0,1]$

- special cases: $\Phi(s) = ns \mod 1$, $\Phi(s) = 1 ns \mod 1$
- can recover \boldsymbol{q} from \boldsymbol{s} : $\boldsymbol{q} = \Phi(\boldsymbol{s}) \implies \boldsymbol{s}$ PP.
- $\begin{array}{ll} \text{ normalisation:} & \Phi \text{ measure-preserving } \begin{pmatrix} u \sim U([0,1]) \\ \implies \Phi(u) \sim U([0,1]) \end{pmatrix} \\ \implies & (\boldsymbol{s}|\boldsymbol{\theta} = \boldsymbol{\theta}) \sim U([0,1]) \quad \forall \boldsymbol{\theta} \end{array}$

More PP signals

Conditional quantile: $q \coloneqq F(\boldsymbol{\omega}|\boldsymbol{\theta})$. $(q|\boldsymbol{\theta} = \boldsymbol{\theta}) \sim U([0,1]) \quad \forall \boldsymbol{\theta}$.

PP signal 5: $(\boldsymbol{s}|\boldsymbol{q}=q,\boldsymbol{\theta}=\boldsymbol{\theta}) \sim U(\Phi_{\boldsymbol{\theta}}^{-1}(q)),$

where $\Phi_{\theta} : [0,1] \to [0,1]$ measure-preserving

- name: <u>'reordered quantile signal (RQS)'</u>
- special case: $\Phi_{\theta}(s) = n(\theta)s \mod 1$
- could recover \boldsymbol{q} from \boldsymbol{s} and $\boldsymbol{\theta}$: $\boldsymbol{q} = \Phi_{\boldsymbol{\theta}}(\boldsymbol{s})$
- $\begin{array}{rcl} \ \Phi_{\theta} & \text{measure-preserving} & \Longrightarrow & (\boldsymbol{s}|\boldsymbol{\theta} = \theta) \sim U([0,1]) & \forall \theta \\ & \Longrightarrow & \boldsymbol{s} \ \text{PP.} \end{array}$

Characterisation of PP signals

Theorem 1. Under simplifying assumptions $(\Omega \subseteq \mathbf{R}, \quad \omega \mapsto F(\omega|\boldsymbol{\theta}) \text{ continuous}),$

– Every PP signal is a garbling of some RQS.

– RQSs are maximally informative among PP signals.

Not directly in terms of beliefs, but can re-state it that way.

Much more 'wrinkly' than Th'm 2, I find.

A (resolved) puzzle

RQS: $(\boldsymbol{s}|\boldsymbol{q} = q, \boldsymbol{\theta} = \boldsymbol{\theta}) \sim U\left(\Phi_{\boldsymbol{\theta}}^{-1}(q)\right),$ where $\Phi_{\boldsymbol{\theta}} : [0, 1] \rightarrow [0, 1]$ measure-preserving. Could recover \boldsymbol{q} from \boldsymbol{s} and $\boldsymbol{\theta}$: $\boldsymbol{q} = \Phi_{\boldsymbol{\theta}}(\boldsymbol{s}).$ $\stackrel{?}{\Longrightarrow} \boldsymbol{s}$ a garbling of \boldsymbol{q} ? (Contradicts Th'm 1!) Yes if $\boldsymbol{\theta}$ is noise (independent of $\boldsymbol{\omega}$ & non-degenerate) \dots but that's ruled out: $\boldsymbol{\theta} = f(\boldsymbol{\omega}).$

More general setting: arbitrary RVs ω & θ .

- Th'm 1 false as stated. What replaces it?
- Conjecture: Th'm 2 remains true as stated.