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Progress: finding & implementing
better ways of doing things.

Requires

(1) discovery

(2) disclosure.

=⇒ must incentivise prompt disclosure:
screen for private info about when, rather than what.
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Model

Breakthrough occurs at uncertain time.
– privately observed by agent
– expands utility possibilities
– causes conflict of interest

Agent (verifiably) discloses breakthrough at time of her choosing.

Principal controls payoff-relevant allocation over time.

Principal has commitment.
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Applications

Talent-hoarding

Manager observes whether & when subordinate acquires skill.

Conflict: HQ wants to assign talent optimally,
manager wants to keep worker.

Unemployment insurance

Unemployed worker receives job offer at uncertain time.

State observes employment status, not job offers.

Conflict: state wants employed to work hard & pay tax.
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Results

Question: how best to incentivise disclosure of
privately-observed breakthrough?

Answer: mechanisms with deadline structure.

– affine case: simple deadline mechanism.

– in general: graduated deadline mechanism.
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Related literature

Incentives for proposing agent Armstrong–Vickers ’10,
Nocke–Whinston ’13, Guo–Shmaya ’21

– agent privately observes which allocations available

(a) agent can propose only available allocations

(b) principal can implement only proposed allocations.

Bird–Frug ’19: different dynamic model with (a) & (b).

– simple payoffs =⇒ no conflict of interest in our sense

– promised rewards subject to dynamic budget constraint.

Verifiable disclosure: (a) ��(b)
Grossman/Hart/
Milgrom ’80–’81

Dynamic adverse selection: ��(a) ��(b)
e.g. Green–Taylor ’16,

Madsen ’21
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Contribution

(1) identify pervasive agency problem:
the need to incentive prompt disclosure.

(2) isolate & study the problem:
characterise optimal mechanisms.

(3) develop techniques for this problem.
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Model
Agent & principal. Utilities u ∈ [0,∞) and v ∈ [−∞,∞).
Time t ∈ [0,∞). Common discount rate r > 0.

u

v
F 1

F 0

u1 u0

Utility possibility frontiers F 0 ≤ F 1

– unique peaks u0, u1.
– concave and upper semi-continuous
– finite on

(
0, u0].

Conflict of interest:
peaks satisfy u1 < u0.

F 1 arrives at τ ∼ G.

Agent observes breakthrough, can disclose availability of F 1.

Principal controls flow u, has commitment. (discussion: slide 41)
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Illustration

u

v

F 0

F 1

u0u1

v0

v1

Old allocations ( ), new allocation ( ), utility possibility (grey).
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Mechanisms

A mechanism is
(
x0, X1)

– x0
t : flow utility at time t if agent has not disclosed,

– X1
t : continuation utility from disclosing at time t

= r

∫ ∞
t

e−r(s−t)x1,t
s ds for some flow

(
x1,t
s

)
s≥t

.
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Incentive-compatibility

Mechanism
(
x0, X1) is incentive-compatible (‘IC’)

iff agent prefers to disclose promptly:

(a) does not prefer to delay disclosure by some d > 0
(b) does not prefer to never disclose.

Revelation principle: suffices to consider IC mechanisms.

Wlog for IC to use F 1 when available. (Clearly optimal.)
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The principal’s problem after disclosure

Fix a mechanism
(
x0, X1).

Recall: for each t, continuation X1
t provided by a flow

(
x1,t
s

)
s≥t

u

v
F 1

X1
t

s.t. r

∫ ∞
t

e−r(s−t)x1,t
s ds = X1

t .

Principal’s flow payoff: F 1(x1,t
s

)
.

Option 1: constant flow
x1,t
s = X1

t ∀s ≥ t.

Option 2: non-constant flow.

F 1 concave =⇒ constant better.
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The principal’s problem

Fix an IC mechanism
(
x0, X1).

Principal’s flow payoff:

– before breakthrough: F 0(x0
t

)
– after breakthrough: F 1(X1

τ

)
forever

Principal’s problem:

max
(x0,X1)

Eτ∼G

(
r

∫ τ

0
e−rtF 0

(
x0
t

)
dt+ e−rτF 1

(
X1
τ

))
s.t. IC.
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Undominated and optimal mechanisms

Principal’s problem:

max
(x0,X1)

Eτ∼G

(
r

∫ τ

0
e−rtF 0

(
x0
t

)
dt+ e−rτF 1

(
X1
τ

))
s.t. IC.

An IC mechanism dominates another iff
– former is better for every G,
– strictly for some G.

Undominated: not dominated by any IC mechanism.

An IC mechanism is optimal for G iff undominated
& maximises principal’s payoff under G.
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Undominated mechanisms have x0 ≤ u0

Lemma. If
(
x0, X1) is undominated, then x0

t ≤ u0 for a.e. t.

u

v
F 1

F 0

u1 u0

If x0
t > u0, lower it:

– better for principal

– delay less attractive
=⇒ still IC.

(proof: slide 42)
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Keeping the agent indifferent
Fix a mechanism

(
x0, X1).

Let X0
t denote time-t continuation utility from never disclosing:

X0
t := r

∫ ∞
t

e−r(s−t)x0
sds.

Agent chooses between

– disclosing promptly: payoff X1
t

= X0
t

– never disclosing: payoff X0
t

– delaying by d > 0: payoff X0
t + e−rd

(
X1
t+d −X0

t+d

)

︸ ︷︷ ︸
=0

Theorem 1. If
(
x0, X1) is undominated,

then agent always indifferent: X1
t = X0

t for every t.
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Keeping the agent indifferent

Theorem 1. If
(
x0, X1) is undominated,

then agent always indifferent: X1
t = X0

t for every t.

u

v
F 1

F 0

u1 u0

Naïve intuition:
when incentive strict,
lower disclosure reward X1

t .

Problem: need not benefit principal.

Hurts her if X1
t ∈

[
0, u1].

And will spend time here!

(sketch proof: slide 43)
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Dropping superscripts

A mechanism is
(
x0, X1).

An undominated mechanism is pinned down by x0

since X1 must make agent indifferent (Theorem 1):

X1
t = X0

t = r

∫ ∞
t

e−r(s−t)x0
sds.

Drop superscripts: a mechanism is (x,X). (Automatically IC.)
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Deadline mechanisms

u

v
F 1

F 0

u1 u0u?
t

u

X

x

T

u0

u?

Suppose F 0 is affine on
[
0, u0].

Write u? for max of F 1 − F 0 on [0, u0]. Assume unique.

Deadline mechanism (x,X): xt =
{
u0 t < T

u? t ≥ T
for T ∈ [0,∞].
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Deadline mechanisms

u

v
F 1

F 0

u1 u0u?
t

u

X

x

T

u0

u?

Theorem 2. If F 0 is affine on
[
0, u0],

then all undominated mechanisms are deadline mechanisms.
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The role of affineness

u

v
F 1

F 0

u0u1u?

Countervailing force:

if F 0 strictly concave,
then intermediate flows x0

better than extreme ones.

This force is absent if F 0 is affine.
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Front-loading

t

u

X

X†

x

x†

T

u0

u?

Fix a mechanism (x,X)
with u? ≤ x ≤ u0.

Deadline mechanism:

x†t =
{
u0 for t < T

u? for t ≥ T

with T s.t. X†0 = X0.

A front-loading: flow has same present value,
but is higher early and lower late. (better: slide 48)
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Optimal deadline

Optimal deadline depends on breakthrough distribution G:
given by a first-order condition. (undom. DLs: slide 54) (FOC: slide 55)

Later breakthrough (G ↗ in FOSD) =⇒ later deadline.

Summary: if F 0 affine,

– qualitative prediction: deadline mechanism.
distribution-free.

– quantitative prediction: deadline given by FOC.
distribution-dependent.
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Optimal mechanisms in general

u

v
F 1

F 0

u1 u0u?

Let u? be the rightmost u ∈
[
0, u0]

at which F 0, F 1 have equal slopes.

Assume u? is strict local max
of F 1 − F 0 (rather than saddle).

Theorem 3. Any mechanism (x,X) optimal
for a distribution G with G(0) = 0 & unbounded support
has xt ↘ from limt→0 xt = u0 to limt→∞ xt = u?.

Only difference from deadline mech:
transition u0 −→ u? possibly gradual.
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Front-loading vs. concavity

Theorem 3 combines

– Theorem 2 insight: front-loading =⇒ deadline incentives

– mechanical force: concavity =⇒ graduality.

Proof: a ‘local’ front-loading argument. (Rather involved.)
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Optimal path

Distribution-free qualitative prediction: xt ↘ from u0 to u?.

Optimal path depends on breakthrough distribution G:
described by an Euler equation. (Euler: slide 58)

Later breakthrough (G ↗ in MLRP)
=⇒ more lenient: Xt ↗ in every period t.
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Unemployment insurance

Purpose of UI: support the involuntarily unemployed.

– want those with job offers to accept.

Difficulty: job offers privately observed.

=⇒ cannot be too generous
lest workers turn down offers.
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Model

Unemployed worker receives job offer at uncertain time,
chooses whether & when to accept.

Homogeneous jobs: wage w > 0. No saving/borrowing.

State observes employment status, not job offers.

Worker values consumption & leisure: u = φ(C)

C

− κ(L)

L

Social welfare: v = u︸︷︷︸
worker

+ λ ×
(
wL− C

)︸ ︷︷ ︸
net tax revenue

State controls benefits & income tax
⇐⇒ controls C,L. (equivalence: slide 59)
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Optimal UI: literature

Private job offers esp. Atkeson and Lucas (1995)

– assumption: offers expire instantly.

Private search effort esp. Shavell and Weiss (1979),
Hopenhayn and Nicolini (1997)

– moral hazard rather than adverse selection
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Utility possibilities

u = φ(C) − κ(L) v = u + λ×
(
wL− C

)

u

v

u0

F 0

Unemployed: L = 0.

C
C0

λ

φ′
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Utility possibilities

u = φ(C) − κ(L) v = u + λ×
(
wL− C

)

u

v

u0u1

F 0

F 1 Unemployed: L = 0.
Employed: vary both C & L.

Conflict u1 < u0:
state wants L > 0, worker doesn’t.

(u?: slide 60)
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Deadline benefits

Deadline mechanism: e.g. Germany, France, Sweden, . . .

– before deadline: high benefit / efficient consumption
Germany: 60% of previous net salary.

– after deadline: low benefit.
Germany: €446 per month.

u

v

u0u1u?

F 0

F 1 Approx optimal iff F 0 approx affine.

either (a) φ close to affine
or (b) λ small.

(other countries: slide 61)
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Gradual tapering

Exactly optimal benefit: ↘ from generous to low.

Italy:

month

be
ne

fit
(€

pe
r

m
on

th
)

6 12 18 24 30

800

1000

1200

1400
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Choice of deadline
Optimal deadline: later for workers with worse prospects.

=⇒ later (1) for older workers. (2) during recessions.

age

d
ea
d
li
n
e
(m

on
th
s)

20 30 40 50 60

12

18

24

30

36

Germany

France
2020

2020
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Conclusion

Problem: agent privately observes technological breakthrough.

Solution: a deadline structure to incentivise disclosure.

– affine case: simple deadline mechanism.

– in general: graduated deadline mechanism.

Method: new techniques, e.g. front-loading argument.

39



Conclusion

Problem: agent privately observes technological breakthrough.

Future work: embed our problem in richer environments,
utilising our techniques. E.g.

– costly & unobservable effort to hasten breakthrough

– repeated breakthroughs over time.
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The limited role of transfers

u

v
F 1

F 0

u1 u0u•

Suppose can pay agent w ≥ 0.
=⇒ payoffs resp. u+ w & v − w.

Expands utility possibility frontiers
when slope < −1.

Transfers used only where
expanded frontier > original.

Proposition. Undominated mechanisms (x,X) use transfers
– only after disclosure
– only when X > u•.
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Robustness
Weak assumptions on frontiers F 0, F 1, none on distribution G.

u

v
F 1

F 0

u1 u0

Without loss:

– F 0, F 1 concave, usc,
finite on

(
0, u0]

– disclosures verifiable
(if principal observes her payoff)

Nothing changes:

– participation instead of u ≥ 0

– random F 1, provided agent
doesn’t observe realisation.

(back to slide 9)
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Undominated mechanisms have x0 ≤ u0: proof
Lemma. If

(
x0, X1) is undominated, then x0

t ≤ u0 for a.e. t.

u

v
F 1

F 0

u1 u0

Proof: Fix an IC
(
x0, X1).

Alternative mechanism:(
min

{
x0, u0}, X1).

Better, strictly unless x0 ≤ u0 a.e.

and IC: in every period,
– disclosure equally attractive
– non-disclosure
(weakly) less attractive. �

(back to slide 17)
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Sketch proof of Theorem 1

u

v
F 1

F 0

u1 u0

Discrete time. Write β := e−r.

IC requires

X1
s ≥ (1− β)x0

s + βX1
s+1 ∀s.

Suppose IC slack at time t:

X1
t︸︷︷︸

> u1

> (1− β) x0
t︸︷︷︸

≥ u1

+ β X1
t+1︸ ︷︷ ︸
≥ u1

.

If both RHS terms are ≥ u1, then the LHS is > u1

⇐⇒ either (i) X1
t > u1, (ii) x0

t < u1, or (iii) X1
t+1 < u1.
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Sketch proof of Theorem 1
slack IC: X1

t > (1− β)x0
t + βX1

t+1

=⇒ either (i) X1
t > u1, (ii) x0

t < u1, or (iii) X1
t+1 < u1

There’s an IC-preserving improvement in each case:

u

v
F 1

F 0

u1 u0

Case (i): lower X1
t

(Preserves time-t IC,
slackens time-(t− 1) IC.)

Case (ii): raise x0
t

(Preserves time-t IC.)

Case (iii): raise X1
t+1

(Preserves time-t IC,
slackens time-(t+ 1) IC.)

(back to slide 20)
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Sketch proof of Theorem 1: remaining pieces

(1) We showed: agent is indifferent about delaying disclosure.

Final piece: agent indifferent about never disclosing.
(proof: slide 46)

(2) Proof in continuous time: delicate, but same economics.

– case (ii): insufficient to modify x0 in single period:
must increase it on non-null set of times.

– cases (i) & (iii): cannot modify X1 in single period
while preserving IC.

(back to slide 20)
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Final piece in proof of Theorem 1

u

v
F 1

F 0

u1 u0

We showed: agent is indifferent
about delaying disclosure:

X1
t = (1− β)x0

t + βX1
t+1

= (1− β)
T−1∑
s=t

βs−tx0
s︸ ︷︷ ︸

→ X0
t as T →∞

+βT−tX1
T .

Must show:
indifferent about never disclosing:

X1
t = X0

t ⇐⇒ lim
T→∞

βT−tX1
T = 0.

If not, then X1
t blows up as t→∞.

Fairly clear that this is not optimal. (back to slide 45)
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Final piece in proof of Theorem 1: formal

Since X1
t →∞, there is a time T after which X1

t > u0 + u1.

Consider
(
x0, X1†), where X1†

t :=
{
X1
t for t ≤ T

X0
t + u1 for t > T .

Better since u1 ≤ X1†
t ≤ X1

t , strictly after T .

To verify IC, check deviations:

– never disclosing is unprofitable: X1† ≥ X0

– before T , delay is unprofitable:
– delaying to t′ ≤ T : same as in original mechanism
– delaying to t′ > T : worse than in original mechanism

– after T , delay is unprofitable:
earn u1 upon disclosure, so sooner is better. (back to slide 45)
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Sketch proof of Theorem 2

t

u

X

X†

x

x†

T

u0

u?

Fix a mechanism (x,X)
with u? ≤ x ≤ u0.

Deadline mechanism:

x†t =
{
u0 for t < T

u? for t ≥ T

with T s.t. X†0 = X0.

Front-loading x makes X decrease faster (before T ):

X†t ≤ Xt with equality at t = 0.

(proof: slide 51)
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Sketch proof of Theorem 2

Write Yt := r

∫ ∞
t

e−rsF 0(xs)ds

.

= F 0
(
r

∫ ∞
t

e−rsxsds
)

= F 0(Xt) since F 0 affine.

Principal’s payoff: Y0 + e−rτ
[
F 1(Xτ ) − Yτ

]

.

= F 0(X0) + e−rτ
[
F 1(Xτ ) − F 0(Xτ )

]
.

Front-loading. . .

– increases pre-disclosure payoff Y0 − e−rτYτ .

– changes post-disclosure payoff F 1(Xτ ).
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Sketch proof of Theorem 2

u

v
F 1

F 0

u1 u0u?
t

u

X

X†

x

x†

T

u0

u?

Principal’s payoff: F 0(X0) + e−rτ
[
F 1(Xτ )− F 0(Xτ )

]
.

Since X ≥ u?, F 0 steeper than F 1 =⇒ lower X is better.

Slight elaboration to drop assumption x ≥ u?. (full proof: slide 52)

(back to slide 25)
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Proof of Theorem 2: front-loading lowers X
Mechanism (x,X). Deadline mechanism:

x†t =
{
u0 for t < T

u? for t ≥ T
with T s.t. X†0 = X0.

Claim. X† ≤ X. (With equality at t = 0.)

Proof:
– For t < T , since x† = u0 ≥ x on [0, t] ⊆ [0, T ],

e−rtX†t = X†0 − r
∫ t

0
e−rsx†sds

≤ X0 − r
∫ t

0
e−rsxsds = e−rtXt.

– for t ≥ T , X†t = u? ≤ Xt.
(Recall: assumed u? ≤ X for simplicity.) �

(back to slide 48)
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Proof of Theorem 2: dropping x ≥ u?

Principal’s payoff = F 0(X0) + e−rτ
[
F 1 − F 0

]
(Xτ )

t

u

X

X†

x

x†

T

u0

u?

Fix any mechanism (x,X).

Alternative deadline mechanism:

x†t =
{
u0 for t < T

u? for t ≥ T ,

with T s.t. X†0 = X0 ∨ u?.

Idea: still a front-loading, but now possibly increase X0. (Good.)
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Proof of Theorem 2: dropping x ≥ u?

Principal’s payoff = F 0(X0) + e−rτ
[
F 1 − F 0

]
(Xτ )

u

v
F 1

F 0

u1 u0u?

By the front-loading logic,
X† ≤ X ∨ u?.
X† better since
both are ≥ u?,
and F 1 − F 0 ↘ on

[
u?, u0].

Clearly X ∨ u? ≥ X.
X ∨ u? better since
they differ only when in [0, u?],
and F 1 − F 0 ↗ on [0, u?].

(back to slide 25)
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Undominated deadlines

u

v
F 1

F 0

u1 u0u?

Are all DL mechs undominated?

No. If T so early that X0 < u1,
better to increase until X0 = u1:

– X higher in every period
=⇒ closer to peak u1

– x high for longer.

But that’s all:

Proposition. If F 0 is affine on
[
0, u0],

then the undominated mechanisms are exactly
the DL mechanisms with deadline late enough that X0 ≥ u1.

(back to slide 26) 54



First-order condition
Assume u? > 0 & F 1 diff’able on

(
0, u0). (And F 0 affine.)

Proposition. Mechanism (x,X) is optimal for G
iff it is a deadline mechanism with Eτ∼G

(
F 1′(Xτ )

)
= 0.

(derivation: next slide)

u

v
F 1

F 0

u1 u0u?

Use new technology optimally
on average.

Pins down deadline T
since X depends on it.

(back to slide 26)
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Derivation of first-order condition

principal’s payoff: Eτ∼G

(
r

∫ τ

0
e−rsF 0(xs)ds+ e−rτF 1(Xτ )

)
.

Increasing T has two effects:

– if τ > T , [
F 0(u0)− F 0(u?)

]
︸ ︷︷ ︸

=F 0′(u?)×(u0−u?)

dT × discounting.

– if τ ≤ T ,
F 1′(Xτ )× dXτ × discounting.

= F 1′(Xτ )×
(
u0 − u?

)
dT × discounting.

First-order condition:
[1−G(T ?)]F 0′(u?) +G(T ?)Eτ∼G

(
F 1′(Xτ )

∣∣∣τ ≤ T ?) = 0.
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Derivation of first-order condition

FOC: [1−G(T ?)]F 0′(u?) +G(T ?)Eτ∼G
(
F 1′(Xτ )

∣∣∣τ ≤ T ?) = 0.

u

v
F 1

F 0

u1 u0u?

F 0′(u?) = F 1′(u?)
since u? is interior max of F 1 − F 0.

Xτ = u? for τ > T ?.

=⇒ first FOC term
= [1−G(T ?)]F 1′(Xτ )

=⇒ FOC reads
Eτ∼G

(
F 1′(Xτ )

)
= 0.

(back to slide 26)
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Optimal path: Euler equation

Proposition. Assume u? > 0 & F 0, F 1 diff’able on
(
0, u0).

If (x,X) is optimal for G with G(0) = 0 & unb’d’d support,
then satisfies

– initial condition Eτ∼G
(
F 1′(Xτ )

)
= 0

– Euler eq’n F 0′(xt) = Eτ∼G
(
F 1′(Xτ )

∣∣τ > t
)

if xt < u0

≥ if xt = u0.

If G has cont’s density g & F 0 twice diff’able with F 0′′ < 0,
differentiated (& rearranged) Euler reads

ẋt = −
(

g(t)
1−G(t)

)
︸ ︷︷ ︸

hazard rate

F 0′(xt)− F 1′(Xt)
−F 0′′(xt)︸ ︷︷ ︸

curvature

.

(back to slide 30)
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Taxation principle for UI

By choosing income tax
schedule θ(Y ) ≤ Y ,

can implement any C,L
s.t. φ(C)− κ(L) ≥ 0.

IC0ICu

L

C

budget set
{
(C,L) ∈ R2

+ : C ≤ wL− θ(wL)
}

induced by θ(Y ) = min{Y,mY + b} =
Y

(back to slide 33)
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Utility possibilities in UI: u?

u = φ(C) − κ(L) v = u + λ×
(
wL− C

)

u

v

u0u1u?

F 0

F 1 F 0′ > F 1′ =⇒ u? = 0.

Reason: interests less aligned
when worker employed.

(back to slide 35: utility poss)
(back to slide 36: DL UI mechs)
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Some deadline UI schemes

before DL after DL (€/mo.)
Germany 60% of net salary 446
Sweden 80% of net salary 415
Netherlands 70% of net salary 1059
France €368/mo. + 0.404× SJR∗ 515

∗SJR: an industry-specific reference salary.

Note: this excludes additional funds for particular expenses, such
as rent or utilities. These are large in e.g. Sweden.

(back to slide 36)
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