The preference lattice

Gregorio Curello

Ludvig Sinander University of Bonn University of Oxford

1

2 April 2022

paper: arXiv.org/abs/1902.07260

Preference comparisons

Preference comparisons are ubiquitous:

- choice under risk/uncertainty:
 - \succeq' is more risk-/ambiguity-averse than $~\succeq~$
- monotone comparative statics:
 - \succeq' takes larger actions than \succeq
- dynamic problems:
 - \succeq' is more delay-averse/impatient than $~\succeq~$

All special cases of single-crossing dominance.

Outline

Study the *lattice structure* of single-crossing dominance:

characterisation, existence and uniqueness results for minimum upper bounds of arbitrary sets of preferences.

Applications:

- monotone comparative statics
- choice under risk/uncertainty
- social choice

Environment

Abstract environment is (\mathcal{X}, \gtrsim) :

- non-empty set \mathcal{X} of alternatives...
- equipped with partial order \gtrsim .

Notation: \mathcal{P} denotes set of all preferences on \mathcal{X} .

Single-crossing dominance S: for preferences $\succeq, \succeq' \in \mathcal{P}$, $\succeq' S \succeq$ iff for any pair $x \gtrsim y$ of alternatives, $x \succeq (\succ) y$ implies $x \succeq' (\succ') y$.

(Note: definition of S depends on \gtrsim .)

(Minimum) upper bounds

Let $P \subseteq \mathcal{P}$ be a set of preferences.

 $\succeq' \in \mathcal{P}$ is an upper bound of P iff $\succeq' S \succeq$ for every $\succeq \in P$.

If also $\succeq'' S \succeq'$ for every (other) upper bound \succeq'' of P, then \succeq' is a *minimum* upper bound.

(MUB = 'join' = 'supremum')

Lattice structure

Study the *lattice structure* of (\mathcal{P}, S) :

- (1) characterisation theorem: characterisation of the minimum upper bounds of any set $P \subseteq \mathcal{P}$ of preferences.
- (2) existence theorem:

necessary and sufficient condition on \gtrsim for every set $P \subseteq \mathcal{P}$ to possess ≥ 1 minimum upper bound. (The condition: \gtrsim contains no *crowns* or *diamonds*.)

(3) **uniqueness proposition** (not today): necessary and sufficient condition on \gtrsim for every set $P \subseteq \mathcal{P}$ to possess = 1 minimum upper bound. (The condition: \gtrsim is complete.)

Applications

Monotone comparative statics:

- group with preferences ${\cal P}$
- consensus C(P): alternatives optimal for every $\succeq \in P$
- comparative statics: when P increases, C(P) increases.

Choice under uncertainty:

- study generalised maxmin preferences: those represented by $X \mapsto \inf_{\succ \in P} c(\succeq, X)$ for some $P \subseteq \mathcal{P}$.
- characterisation: \succeq^* admits maxmin representation *P* iff \succeq^* a MUB of *P* w.r.t. 'more ambiguity-averse than'

Social choice:

- Sen's impossibility: ${\text{strongly liberal}} \cap {\text{Pareto}} = \emptyset$
- (im)possibility: n&s condition for $\{liberal\} \cap \{Pareto\} \neq \emptyset$

Plan

Characterisation theorem

Existence theorem

Application to monotone comparative statics

Application to ambiguity-aversion

P-chains

For alternatives $x \gtrsim y$, a *P*-chain from x to yis a finite sequence $(w_k)_{k=1}^K$ such that (1) $w_1 = x$ and $w_K = y$ (2) $w_k \gtrsim w_{k+1}$, $\forall k < K$ (3) $w_k \succeq w_{k+1}$ for some $\succeq \in P$, $\forall k < K$.

Strict *P*-chain: $w_k \succ w_{k+1}$ for some $\succeq \in P$, $\exists k < K$.

Example: $\mathcal{X} = \{x, y, z\}, \quad x > y > z.$ $P = \{\succeq_1, \succeq_2\}, \text{ where } z \succ_1 x \succ_1 y \text{ and } y \succ_2 z \succ_2 x.$

P-chains, all strict: (x, y), (y, z), (x, y, z).

Note: (x, z) is not a *P*-chain.

Characterisation theorem

Characterisation theorem.

For a preference $\succeq^{\star} \in \mathcal{P}$ and a set $P \subseteq \mathcal{P}$, TFAE:

(1) \succeq^* is a minimum upper bound of *P*.

(2) \succeq^{\star} satisfies: for any \gtrsim -comparable $x, y \in \mathcal{X}$, wlog $x \gtrsim y$, (\star) $x \succeq^{\star} y$ iff \exists *P*-chain from x to y, and ($\star\star$) $y \succeq^{\star} x$ iff \nexists strict *P*-chain from x to y.

(Partial) proof of (2) implies (1)

Characterisation theorem.

For a preference $\succeq' \in \mathcal{P}$ and a set $P \subseteq \mathcal{P}$, TFAE:

- (1) \succeq^* is a minimum upper bound of P.
- (2) \succeq^* satisfies: for any \gtrsim -comparable $x, y \in \mathcal{X}$, wlog $x \gtrsim y$, (*) $x \succeq^* y$ iff \exists *P*-chain from x to y, and (**) $y \succeq^* x$ iff \nexists strict *P*-chain from x to y.

(2) \Longrightarrow (1), upper bound: WTS $\succeq^* S \succeq$ for every $\succeq \in P$: $x \gtrsim y$ and $x \succeq y \implies x \succeq^* y$.

Holds by (\star) because (x, y) is a *P*-chain.

(Partial) proof of (2) implies (1)

Characterisation theorem.

For a preference $\succeq' \in \mathcal{P}$ and a set $P \subseteq \mathcal{P}$, TFAE:

- (1) \succeq^* is a minimum upper bound of P.
- (2) \succeq^* satisfies: for any \gtrsim -comparable $x, y \in \mathcal{X}$, wlog $x \gtrsim y$, (*) $x \succeq^* y$ iff \exists *P*-chain from x to y, and (**) $y \succeq^* x$ iff \nexists strict *P*-chain from x to y.

 $\begin{array}{rcl} (2) \Longrightarrow (1), \mbox{ minimum: } WTS &\succeq' S \succeq^{\star} \mbox{ for every UB} \succeq' \mbox{ of } P: \\ & x \gtrsim y \mbox{ and } x \succeq^{\star} y \implies & x \succeq' y. \end{array}$

By
$$(\star)$$
, $\exists P$ -chain $(w_k)_{k=1}^K$ from x to y :
 $\forall k < K, \quad w_k \gtrsim w_{k+1}$ and $w_k \succeq w_{k+1}$ for some $\succeq \in P$
 $\implies w_k \succeq' w_{k+1}$ because \succeq' is an UB of P
 $\implies x \succeq' y$ since $\succeq' \in \mathcal{P}$ is transitive.

Plan

Characterisation theorem

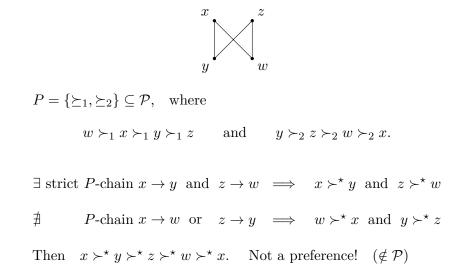
Existence theorem

Application to monotone comparative statics

Application to ambiguity-aversion

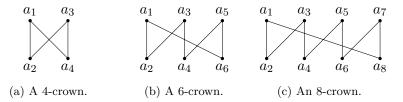
Failure of existence

Example: $\mathcal{X} = \{x, y, z, w\}$ with following partial order \gtrsim :



Crowns

Same idea applies whenever \gtrsim contains a *crown*:



A K-crown ($K \ge 4$ even) is a sequence $(a_k)_{k=1}^K$ in \mathcal{X} s.t.

 $-a_{k-1} > a_k < a_{k+1}$ for $1 < k \le K$ even $(a_{K+1} \equiv a_1)$

– non-adjacent $a_k, a_{k'}$ are \gtrsim -incomparable.

Diamonds

Existence also fails when \gtrsim contains a *diamond*:

A diamond is (x, y, z, w) such that x > y > w and x > z > w, but y, z are incomparable.

(existence failure example on slide 34)

Existence theorem

But that's all:

Existence theorem. The following are equivalent:

- (1) Every set of preferences has ≥ 1 minimum upper bound.
- (2) \gtrsim is crown- and diamond-free.

Special cases:

- (2) holds whenever there are ≤ 3 alternatives
- (2) holds if \gtrsim is complete
- (2) fails for any lattice that isn't a chain (=totally ordered)

Proof $\neg(2) \implies \neg(1)$: by counter-example.

Proof (2) \implies (1): non-trivial. (Relies on Suzumura's extension theorem.)

Plan

Characterisation theorem

Existence theorem

Application to monotone comparative statics

Application to ambiguity-aversion

Monotone comparative statics

Let $\mathcal{X} \subseteq \mathbf{R}$ be a set of actions, ordered by inequality \geq .

Argmax of a preference $\succeq \in \mathcal{P}$:

$$X(\succeq) \coloneqq \{ x \in \mathcal{X} : x \succeq y \text{ for every } y \in \mathcal{X} \}.$$

Consensus among a group with preferences $P \subseteq \mathcal{P}$:

$$C(P) \coloneqq \bigcap_{\succeq \in P} X(\succeq).$$

Comparative statics question: what shifts of P cause consensus C(P) to 'increase'?

Standard theory

For $X, X' \subseteq \mathcal{X}$, X' dominates X in the (\geq -induced) strong set order iff for any $x \in X$ and $x' \in X'$, the meet (join) of $\{x, x'\}$ lies in X (in X').

Theorem.¹ For $\succeq, \succeq' \in \mathcal{P}$, if $\succeq' S \succeq$, then $X(\succeq')$ dominates $X(\succeq)$ in the (\geq -induced) strong set order.

¹Milgrom and Shannon (1994) and LiCalzi and Veinott (1992).

Consensus comparative statics

 \geq is complete \implies crown- and diamond-free \implies every set of preferences has \geq 1 meet and join.

For $P, P' \subseteq \mathcal{P}$, P' dominates P in the (S-induced) strong set order iff for any $\succeq \in P$ and $\succeq' \in P'$, the meet (join) of $\{\succeq, \succeq'\}$ lies in P (in P').

Proposition. For $P, P' \subseteq \mathcal{P}$, if P' dominates P in the (S-induced) strong set order, then C(P') dominates C(P) in the (\geq -induced) strong set order.

Proof

Take $x \in C(P)$ and $x' \in C(P')$; Must show $x \wedge x' \in C(P)$ and $x \vee x' \in C(P')$.

Take arbitrary $\succeq \in P$ and $\succeq' \in P'$. Note $x \in C(P) \subseteq X(\succeq)$.

By existence theorem, \exists minimum upper bound \succeq^* of $\{\succeq, \succeq'\}$.

Since
$$P'$$
 dominates P in the SSO, \succeq^* lies in P' .
 $\implies x' \in C(P') \subseteq X(\succeq^*).$

Since $\succeq^* S \succeq$, $X(\succeq^*)$ dominates $X(\succeq)$ in the SSO by the standard theorem two slides back.

 $\implies x \wedge x' \in X(\succeq).$

Since $\succeq \in P$ was arbitrary, $\implies x \land x' \in \bigcap_{\succeq \in P} X(\succeq) = C(P).$

Plan

Characterisation theorem

Existence theorem

Application to monotone comparative statics

Application to ambiguity-aversion

Choice under uncertainty

Standard Savage framework:

- states of the world Ω
- monetary prizes $\Pi \subseteq \mathbf{R}$
- a set \mathcal{X} of acts, meaning functions $X: \Omega \to \Pi$
- the subset of constant acts is denoted $\mathcal{C} \subseteq \mathcal{X}$

Notation: \mathcal{P} is the set of all preferences (no axioms) on \mathcal{X} .

Definition.² For preferences $\succeq, \succeq' \in \mathcal{P}$ over acts, \succeq' is more ambiguity-averse than \succeq iff for any act $X \in \mathcal{X}$ and constant act $C \in \mathcal{C}$, $C \succeq (\succ) X \implies C \succeq' (\succ') X.$

²Ghirardato and Marinacci (2002) and Epstein (1999).

'More ambiguity-averse than' as single-crossing

Definition. For preferences $\succeq, \succeq' \in \mathcal{P}$ over acts, \succeq' is more ambiguity-averse than \succeq , iff for any act $X \in \mathcal{X}$ and constant act $C \in \mathcal{C}$, $C \succeq (\succ) X \implies C \succeq' (\succ') X.$

Define \gtrsim on \mathcal{X} as follows: for acts $X, Y \in \mathcal{X}, \quad X \gtrsim Y$ iff either (i) X is constant and Y is not, or (ii) X = Y.

'More ambiguity-averse than' is precisely single-crossing dominance S as induced by \gtrsim .

Choice under uncertainty: failure of existence

'More ambiguity-averse than' is S as induced by \gtrsim , where $X \gtrsim Y$ iff either

(i) X is constant and Y is not, or

(ii) X = Y.

 \gtrsim contains crowns!

 \implies not all sets of preferences possess minimum upper bounds.

Existence

Let's restrict attention to monotone preferences:

Preference $\succeq \in \mathcal{P}$ is monotone iff for any constant acts $C, D \in \mathcal{C}, \quad C \succeq D$ iff $C \ge D$.

Augment the definition of $\gtrsim: X \gtrsim' Y$ iff either

- (i) X is constant and Y is not,
- (ii) X = Y, or
- (iii) X, Y are constant and $X \ge Y$.

All monotone preferences agree with \gtrsim' on pairs of type (iii).

⇒ for monotone preferences, 'more ambiguity-averse than' coincides with S as induced by \gtrsim' .

And \gtrsim' is crown- and diamond-free.

- \implies every set of monotone preferences has
- ≥ 1 minimum upper bound w.r.t. 'more ambiguity-averse than'.

Solvability

A certainty equivalent for $\succeq \in \mathcal{P}$ of an act $X \in \mathcal{X}$ is a prize $c(\succeq, X) \in \Pi$ such that $X \succeq c(\succeq, X) \succeq X$.

A preference with a certainty equivalent for every act is called *solvable*.

Maxmin representations

Definition. A set $P \subseteq \mathcal{P}$ of monotone and solvable preferences is a maxmin representation of a preference $\succeq^* \in \mathcal{P}$ iff

$$X \mapsto \inf_{\succeq \in P} c(\succeq, X)$$

ordinally represents \succeq^* .

Maxmin expected utility³ is a special case: P a set of expected-utility preferences with the same (strictly increasing) u but different beliefs μ_{\succ} .

$$\begin{split} X &\mapsto \inf_{\succeq \in P} c(\succeq, X) = \inf_{\succeq \in P} u^{-1} \bigg(\int_{\Omega} [u \circ X] \mathrm{d}\mu_{\succeq} \bigg) \\ &= u^{-1} \bigg(\inf_{\succeq \in P} \int_{\Omega} [u \circ X] \mathrm{d}\mu_{\succeq} \bigg) \end{split}$$

³Gilboa and Schmeidler (1989).

Maxmin-join equivalence

Proposition. For a preference $\succeq^* \in \mathcal{P}$ and a set $P \subseteq \mathcal{P}$ of monotone and solvable preferences over acts, TFAE:

(1) P is a maxmin representation of \succeq^* .

(2) \succeq^{\star} is a minimum upper bound of P w.r.t. 'more ambiguity-averse than'.

Proof relies on the characterisation theorem. (slide 35)

(Trivial) representation theorem

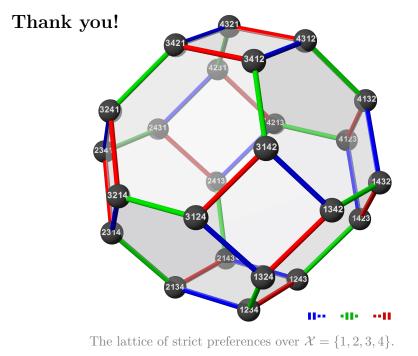
Entire maxmin class is too broad to restrict behaviour much:

Proposition. A preference over acts admits a maxmin representation iff it is monotone and solvable.

 $\stackrel{\quad \leftarrow}{\longleftarrow}: \quad \mbox{if } \succeq^* \mbox{ is monotone } \& \mbox{ solvable} \\ \mbox{ then } \{\succeq^*\} \mbox{ is a maxmin representation.}$

⇒: suppose \succeq^* admits maxmin representation P. Solvable: certainty equivalent of X is $\inf_{\succeq \in P} c(\succeq, X)$. Monotone: on the constant acts C, \succeq^* is represented by

$$C \mapsto \inf_{\succeq \in P} \underbrace{c(\succeq, C)}_{=C} = C.$$



Failure of uniqueness

Consider

 $\text{Observe:} \ \succeq' S \succeq \ \text{holds for any} \succeq, \succeq' \in \mathcal{P}:$

'for any \gtrsim -comparable pair of alternatives $x, y \in \mathcal{X}$, wlog $x \gtrsim y$, $x \succeq (\succ) y \implies x \succeq'(\succ') y$.'

Holds vacuously (no pairs are \gtrsim -comparable).

 \implies every $\succeq \in \mathcal{P}$ is a minimum upper bound of every $P \subseteq \mathcal{P}$.

Uniqueness

Uniqueness proposition. The following are equivalent:

- (1) Every set of preferences has ≤ 1 minimum upper bound.
- (2) Every set of preferences has = 1 minimum upper bound.
- (3) \gtrsim is complete.

Failure of existence for diamonds

Existence fails for $P = \{\succeq_1, \succeq_2\} \subseteq \mathcal{P}$, where

 $y \succ_1 w \succ_1 z \succ_1 x$ and $w \succ_2 z \succ_2 x \succ_2 y$.

$$\begin{array}{lll} \exists & \text{strict } P\text{-chain} & x \to w & & (\text{viz. } (x, y, w)) \\ \nexists & P\text{-chain} & z \to w & \text{or} & x \to z \end{array}$$

 $\implies x \succ^{\star} w \succ^{\star} z \succ^{\star} x.$ Not a preference! $(\notin \mathcal{P})$

(back to slide 15)

Proof of maxmin-join equivalence

By characterisation theorem, suffices to show that for $X \gtrsim' Y$, \exists (strict) *P*-chain $X \to Y$ iff

$$\inf_{\succeq \in P} c(\succeq, X) \ge (>) \inf_{\succeq \in P} c(\succeq, Y).$$

X = C constant, Y not: the following are equivalent:

- \exists (strict) *P*-chain from *C* to *Y*.
- $C \succeq'(\succ') Y$ for some preference $\succeq' \in P$.
- $-\inf_{\succeq \in P} c(\succeq, C) \ge (>) \inf_{\succeq \in P} c(\succeq, Y).$
- X = C, Y = D both constant: the following are equivalent: - \exists (strict) *P*-chain from *C* to *D*. - $C \ge (>) D$.
 - $-\inf_{\succeq \in P} c(\succeq, C) \ge (>) \inf_{\succeq \in P} c(\succeq, D).$

(back to slide 29)

References

Epstein, L. G. (1999). A definition of uncertainty aversion. Review of Economic Studies, 6(3), 579–608. https://doi.org/10.1111/1467-937X.00099 Ghirardato, P., & Marinacci, M. (2002). Ambiguity made precise: A comparative foundation. Journal of Economic Theory, 102(2), 251–289. https://doi.org/10.1006/jeth.2001.2815 Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of Mathematical Economics, 18(2), 141–153. https://doi.org/10.1016/0304-4068(89)90018-9 LiCalzi, M., & Veinott, A. F. (1992). Subextremal functions and *lattice programming* [working paper]. https://doi.org/10.2139/ssrn.877266 Milgrom, P., & Shannon, C. (1994). Monotone comparative statics. Econometrica, 62(1), 157-180. https://doi.org/10.2307/2951479