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Preference comparisons

Preference comparisons are ubiquitous:

– choice under risk/uncertainty:
�′ is more risk-/ambiguity-averse than �

– monotone comparative statics:
�′ takes larger actions than �

– dynamic problems:
�′ is more delay-averse/impatient than �

All special cases of single-crossing dominance.
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Outline

Study the lattice structure of single-crossing dominance:

characterisation, existence and uniqueness results for
minimum upper bounds of arbitrary sets of preferences.

Applications:
– monotone comparative statics
– choice under risk/uncertainty
– social choice
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Environment

Abstract environment is (X ,&):
– non-empty set X of alternatives. . .
– equipped with partial order &.

Notation: P denotes set of all preferences on X .

Single-crossing dominance S: for preferences �,�′ ∈ P,
�′ S � iff for any pair x & y of alternatives,
x �(�) y implies x �′(�′) y.

(Note: definition of S depends on &.)
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(Minimum) upper bounds

Let P ⊆ P be a set of preferences.

�′ ∈ P is an upper bound of P iff �′ S � for every � ∈ P .

If also �′′ S �′ for every (other) upper bound �′′ of P ,
then �′ is a minimum upper bound.

(MUB = ‘join’ = ‘supremum’)
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Lattice structure

Study the lattice structure of (P, S):

(1) characterisation theorem:
characterisation of the minimum upper bounds
of any set P ⊆ P of preferences.

(2) existence theorem:
necessary and sufficient condition on &
for every set P ⊆ P to possess ≥ 1 minimum upper bound.
(The condition: & contains no crowns or diamonds.)

(3) uniqueness proposition (not today):
necessary and sufficient condition on &
for every set P ⊆ P to possess = 1 minimum upper bound.
(The condition: & is complete.)
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Applications
Monotone comparative statics:

– group with preferences P
– consensus C(P ): alternatives optimal for every � ∈ P
– comparative statics: when P increases, C(P ) increases.

Choice under uncertainty:
– study generalised maxmin preferences:
those represented by X 7→ inf�∈P c(�, X) for some P ⊆ P.

– characterisation: �? admits maxmin representation P
iff �? a MUB of P w.r.t. ‘more ambiguity-averse than’

Social choice:
– Sen’s impossibility: {strongly liberal} ∩ {Pareto} = ∅
– (im)possibility: n&s condition for {liberal} ∩ {Pareto} 6= ∅
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Plan

Characterisation theorem

Existence theorem

Application to monotone comparative statics

Application to ambiguity-aversion
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P -chains

For alternatives x & y, a P -chain from x to y
is a finite sequence (wk)K

k=1 such that
(1) w1 = x and wK = y

(2) wk & wk+1, ∀k < K

(3) wk � wk+1 for some � ∈ P , ∀k < K.

Strict P -chain: wk � wk+1 for some � ∈ P , ∃k < K.

Example: X = {x, y, z}, x > y > z.
P = {�1,�2}, where z �1 x �1 y and y �2 z �2 x.

P -chains, all strict: (x, y), (y, z), (x, y, z).

Note: (x, z) is not a P -chain.
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Characterisation theorem

Characterisation theorem.
For a preference �? ∈ P and a set P ⊆ P, TFAE:

(1) �? is a minimum upper bound of P .

(2) �? satisfies: for any &-comparable x, y ∈ X , wlog x & y,

(?) x �? y iff ∃ P -chain from x to y, and

(??) y �? x iff @ strict P -chain from x to y.
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(Partial) proof of (2) implies (1)
Characterisation theorem.
For a preference �′ ∈ P and a set P ⊆ P, TFAE:
(1) �? is a minimum upper bound of P .

(2) �? satisfies: for any &-comparable x, y ∈ X , wlog x & y,
(?) x �? y iff ∃ P -chain from x to y, and

(??) y �? x iff @ strict P -chain from x to y.

(2) =⇒ (1), upper bound: WTS �? S � for every � ∈ P :
x & y and x � y =⇒ x �? y.

Holds by (?) because (x, y) is a P -chain.
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(Partial) proof of (2) implies (1)
Characterisation theorem.
For a preference �′ ∈ P and a set P ⊆ P, TFAE:
(1) �? is a minimum upper bound of P .

(2) �? satisfies: for any &-comparable x, y ∈ X , wlog x & y,
(?) x �? y iff ∃ P -chain from x to y, and

(??) y �? x iff @ strict P -chain from x to y.

(2) =⇒ (1), minimum: WTS �′ S �? for every UB �′ of P :
x & y and x �? y =⇒ x �′ y.

By (?), ∃ P -chain (wk)K
k=1 from x to y:

∀k < K, wk & wk+1 and wk � wk+1 for some � ∈ P

=⇒ wk �′ wk+1 because �′ is an UB of P

=⇒ x �′ y since �′ ∈ P is transitive.
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Plan

Characterisation theorem

Existence theorem

Application to monotone comparative statics

Application to ambiguity-aversion
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Failure of existence
Example: X = {x, y, z, w} with following partial order &:

x

y

z

w

P = {�1,�2} ⊆ P, where

w �1 x �1 y �1 z and y �2 z �2 w �2 x.

∃ strict P -chain x→ y and z → w =⇒ x �? y and z �? w

@ P -chain x→ w or z → y =⇒ w �? x and y �? z

Then x �? y �? z �? w �? x. Not a preference! (/∈ P)
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Crowns

Same idea applies whenever & contains a crown:

a1

a2

a3

a4

(a) A 4-crown.

a1

a2

a3

a4

a5

a6

(b) A 6-crown.

a1

a2

a3

a4

a5

a6

a7

a8

(c) An 8-crown.

A K-crown (K ≥ 4 even) is a sequence (ak)K
k=1 in X s.t.

– ak−1 > ak < ak+1 for 1 < k ≤ K even (aK+1 ≡ a1)

– non-adjacent ak, ak′ are &-incomparable.
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Diamonds

Existence also fails when & contains a diamond:

x

y z

w

A diamond is (x, y, z, w) such that x > y > w and x > z > w,
but y, z are incomparable.

(existence failure example on slide 34)
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Existence theorem
But that’s all:

Existence theorem. The following are equivalent:

(1) Every set of preferences has ≥ 1 minimum upper bound.

(2) & is crown- and diamond-free.

Special cases:
– (2) holds whenever there are ≤ 3 alternatives
– (2) holds if & is complete
– (2) fails for any lattice that isn’t a chain (=totally ordered)

Proof ¬(2) =⇒ ¬(1): by counter-example.

Proof (2) =⇒ (1): non-trivial.
(Relies on Suzumura’s extension theorem.)
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Plan

Characterisation theorem

Existence theorem

Application to monotone comparative statics

Application to ambiguity-aversion
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Monotone comparative statics

Let X ⊆ R be a set of actions, ordered by inequality ≥.

Argmax of a preference � ∈ P:

X(�) := {x ∈ X : x � y for every y ∈ X}.

Consensus among a group with preferences P ⊆ P:

C(P ) :=
⋂
�∈P

X(�).

Comparative statics question:
what shifts of P cause consensus C(P ) to ‘increase’?
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Standard theory

For X,X ′ ⊆ X ,
X ′ dominates X in the (≥-induced) strong set order iff
for any x ∈ X and x′ ∈ X ′,
the meet (join) of {x, x′} lies in X (in X ′).

Theorem.1 For �,�′ ∈ P, if �′ S �,
then X(�′) dominates X(�) in the (≥-induced) strong set order.

1Milgrom and Shannon (1994) and LiCalzi and Veinott (1992).
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Consensus comparative statics

≥ is complete =⇒ crown- and diamond-free
=⇒ every set of preferences has ≥ 1 meet and join.

For P, P ′ ⊆ P,
P ′ dominates P in the (S-induced) strong set order iff
for any � ∈ P and �′ ∈ P ′,
the meet (join) of {�,�′} lies in P (in P ′).

Proposition. For P, P ′ ⊆ P,
if P ′ dominates P in the (S-induced) strong set order,
then C(P ′) dominates C(P ) in the (≥-induced) strong set order.
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Proof
Take x ∈ C(P ) and x′ ∈ C(P ′);
Must show x ∧ x′ ∈ C(P ) and x ∨ x′ ∈ C(P ′).

Take arbitrary � ∈ P and �′ ∈ P ′. Note x ∈ C(P ) ⊆ X(�).

By existence theorem, ∃ minimum upper bound �? of {�,�′}.

Since P ′ dominates P in the SSO, �? lies in P ′.
=⇒ x′ ∈ C(P ′) ⊆ X(�?).

Since �? S �, X(�?) dominates X(�) in the SSO
by the standard theorem two slides back.

=⇒ x ∧ x′ ∈ X(�).

Since � ∈ P was arbitrary,
=⇒ x ∧ x′ ∈

⋂
�∈P X(�) = C(P ).
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Plan

Characterisation theorem

Existence theorem

Application to monotone comparative statics

Application to ambiguity-aversion
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Choice under uncertainty

Standard Savage framework:
– states of the world Ω
– monetary prizes Π ⊆ R
– a set X of acts, meaning functions X : Ω→ Π
– the subset of constant acts is denoted C ⊆ X

Notation: P is the set of all preferences (no axioms) on X .

Definition.2 For preferences �,�′ ∈ P over acts,
�′ is more ambiguity-averse than �
iff for any act X ∈ X and constant act C ∈ C,
C �(�) X =⇒ C �′(�′) X.

2Ghirardato and Marinacci (2002) and Epstein (1999).
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‘More ambiguity-averse than’ as single-crossing

Definition. For preferences �,�′ ∈ P over acts,
�′ is more ambiguity-averse than �,
iff for any act X ∈ X and constant act C ∈ C,
C �(�) X =⇒ C �′(�′) X.

Define & on X as follows:
for acts X,Y ∈ X , X & Y iff either
(i) X is constant and Y is not, or
(ii) X = Y .

‘More ambiguity-averse than’ is precisely
single-crossing dominance S as induced by &.
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Choice under uncertainty: failure of existence

‘More ambiguity-averse than’ is S as induced by &,
where X & Y iff either
(i) X is constant and Y is not, or
(ii) X = Y .

& contains crowns!
C

X

C ′

Y

=⇒ not all sets of preferences possess minimum upper bounds.
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Existence
Let’s restrict attention to monotone preferences:

Preference � ∈ P is monotone
iff for any constant acts C,D ∈ C, C � D iff C ≥ D.

Augment the definition of &: X &′ Y iff either
(i) X is constant and Y is not,
(ii) X = Y , or
(iii) X,Y are constant and X ≥ Y .

All monotone preferences agree with &′ on pairs of type (iii).
=⇒ for monotone preferences, ‘more ambiguity-averse than’

coincides with S as induced by &′.

And &′ is crown- and diamond-free.
=⇒ every set of monotone preferences has
≥ 1 minimum upper bound w.r.t. ‘more ambiguity-averse than’.
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Solvability

A certainty equivalent for � ∈ P of an act X ∈ X
is a prize c(�, X) ∈ Π such that X � c(�, X) � X.

A preference with a certainty equivalent for every act is called
solvable.
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Maxmin representations
Definition. A set P ⊆ P of monotone and solvable preferences
is a maxmin representation of a preference �? ∈ P iff

X 7→ inf
�∈P

c(�, X)

ordinally represents �?.

Maxmin expected utility3 is a special case:
P a set of expected-utility preferences with
the same (strictly increasing) u but different beliefs µ�.

X 7→ inf
�∈P

c(�, X) = inf
�∈P

u−1
(∫

Ω
[u ◦X]dµ�

)
= u−1

(
inf
�∈P

∫
Ω

[u ◦X]dµ�
)

3Gilboa and Schmeidler (1989).
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Maxmin–join equivalence

Proposition. For a preference �? ∈ P and a set P ⊆ P of
monotone and solvable preferences over acts, TFAE:

(1) P is a maxmin representation of �?.

(2) �? is a minimum upper bound of P
w.r.t. ‘more ambiguity-averse than’.

Proof relies on the characterisation theorem. (slide 35)
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(Trivial) representation theorem

Entire maxmin class is too broad to restrict behaviour much:

Proposition. A preference over acts admits a maxmin
representation iff it is monotone and solvable.

⇐=: if �? is monotone & solvable
then {�?} is a maxmin representation.

=⇒ : suppose �? admits maxmin representation P .

Solvable: certainty equivalent of X is inf�∈P c(�, X).

Monotone: on the constant acts C, �? is represented by

C 7→ inf
�∈P

c(�, C)︸ ︷︷ ︸
=C

= C.
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Thank you!

The lattice of strict preferences over X = {1, 2, 3, 4}.
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Failure of uniqueness

Consider
X = {(1, 0)︸ ︷︷ ︸

x

, (0, 1)︸ ︷︷ ︸
y

} =
x

y

Observe: �′ S � holds for any �,�′ ∈ P:

‘for any &-comparable pair of alternatives x, y ∈ X , wlog x & y,
x �(�) y =⇒ x �′(�′) y.’

Holds vacuously (no pairs are &-comparable).

=⇒ every � ∈ P is a minimum upper bound of every P ⊆ P.
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Uniqueness

Uniqueness proposition. The following are equivalent:

(1) Every set of preferences has ≤ 1 minimum upper bound.

(2) Every set of preferences has = 1 minimum upper bound.

(3) & is complete.
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Failure of existence for diamonds

x

y z

w

Existence fails for P = {�1,�2} ⊆ P, where

y �1 w �1 z �1 x and w �2 z �2 x �2 y.

∃ strict P -chain x→ w (viz. (x, y, w))
@ P -chain z → w or x→ z

=⇒ x �? w �? z �? x. Not a preference! (/∈ P)

(back to slide 15)

34



Proof of maxmin–join equivalence
By characterisation theorem, suffices to show that for X &′ Y ,
∃ (strict) P -chain X → Y iff

inf
�∈P

c(�, X) ≥(>) inf
�∈P

c(�, Y ).

X = C constant, Y not: the following are equivalent:
– ∃ (strict) P -chain from C to Y .
– C �′(�′) Y for some preference �′ ∈ P .
– inf�∈P c(�, C) ≥(>) inf�∈P c(�, Y ).

X = C, Y = D both constant: the following are equivalent:
– ∃ (strict) P -chain from C to D.
– C ≥(>) D.
– inf�∈P c(�, C) ≥(>) inf�∈P c(�, D).

(back to slide 29)
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