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Canonical persuasion model (Kamenica & Gentzkow, 2011)

– important model of strategic info-provision

↪→ arguably most important new theory in last 15–20 years

– question: what will and won’t be disclosed?

model: a sender designs signal.

(no functional-form restrictions)

– beginning to shape empirical research
e.g. Vatter (2022), Decker (2022), Crépon, Frot & Gaillac (in progress)

– more applic’ns: grades
labelling (food labels, energy ratings, . . . )
credit scores
. . .
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Motivation

Canonical persuasion model (Kamenica & Gentzkow, 2011)

Main question: ‘what are optimal signals like?’ Hard.
e.g. Kolotilin (2014, 2018), Gentzkow and Kamenica (2016),

Dworczak and Martini (2019), Kleiner, Moldovanu and Strack (2021),
Arieli, Babichenko, Smorodinsky and Yamashita (2023)

Open question: ‘how do optimal signals vary with primitives?’

This paper: answer that question.

2



Motivation

Canonical persuasion model (Kamenica & Gentzkow, 2011)

Main question: ‘what are optimal signals like?’ Hard.
e.g. Kolotilin (2014, 2018), Gentzkow and Kamenica (2016),

Dworczak and Martini (2019), Kleiner, Moldovanu and Strack (2021),
Arieli, Babichenko, Smorodinsky and Yamashita (2023)

Open question: ‘how do optimal signals vary with primitives?’

This paper: answer that question.

2



Motivation

Canonical persuasion model (Kamenica & Gentzkow, 2011)

Main question: ‘what are optimal signals like?’ Hard.
e.g. Kolotilin (2014, 2018), Gentzkow and Kamenica (2016),

Dworczak and Martini (2019), Kleiner, Moldovanu and Strack (2021),
Arieli, Babichenko, Smorodinsky and Yamashita (2023)

Open question: ‘how do optimal signals vary with primitives?’

This paper: answer that question.

2



Overview

Question: when does a shift of model parameters cause
sender to choose a more informative signal?

Answer: identify the necessary & sufficient conditions.

On one hand: conditions are strong.

=⇒ often cannot draw
comparative-statics conclusions.

On other hand: conditions hold in several applications.

↪→ special case: ‘S’-shaped payoffs (common in recent lit).

↪→ special2 cases: known comparative-statics results( Kolotilin, Mylovanov and Zapechel-
nyuk, 2022; Gitmez and Molavi, 2023

)
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The persuasion model
Terminology: ‘distribution’ means CDF [0, 1] → [0, 1].

State (a bounded RV, wlog ∈ [0, 1]) ∼ F0 (‘the prior’).

Sender chooses signal. (RV jointly distributed with state.)

Prior + signal + signal realisation
=⇒ posterior belief about state, with some mean.

Hence prior + signal =⇒ random posterior mean (a RV).

Assumption: sender cares only about posterior mean.
Payoff u(m) from posterior mean m ∈ [0, 1].

↪→ motivated by applications; common in recent lit.

Sender chooses signal to max E
[
u(random posterior mean)

]
.
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Interpretation

u(·) is a reduced-form object.

Captures (expected) payoff from downstream interaction.

↪→ e.g. actions taken by some ‘receivers’.

Our analysis is robust to downstream details:
identifies necessary & sufficient conditions directly on u.

↪→ can then check these in applications.
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Application: privately informed receiver

Model of Kolotilin, Mylovanov, Zapechelnyuk and Li (2017):

Receiver chooses whether to ‘participate’; sender hopes yes.

↪→ example: whether to buy sender’s good.

Sender provides info about value of particip’n (=state).

Outside option worth R ∼ G, privately observed by receiver.

=⇒ u(m) = P(R ≤ m) = G(m).

Question: what shifts of G cause more info-provision?

D 7
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Kolotilin’s (2014) reformulation
Model: max

S∈{signals}
ES

[
u(random posterior mean)

]

=
∫
udFS

where (random posterior mean induced by S) ∼ FS .

Reformulation: sender chooses FS directly.

Optimal choices: arg max
F feasible given F0

∫
udF

where ‘F feasible given F0’
def’n⇐⇒ ∃ signal S such that FS = F .

Fact: F feasible given F0
⇐⇒ F a mean-preserving contraction of F0( def’n⇐⇒

∫ x
0 F ≤

∫ x
0 F0 ∀x ∈ [0, 1) &

∫ 1
0 F =

∫ 1
0 F0

)
.

8



Kolotilin’s (2014) reformulation
Model: max

S∈{signals}
ES

[
u(random posterior mean)

]
=

∫
udFS

where (random posterior mean induced by S) ∼ FS .

Reformulation: sender chooses FS directly.

Optimal choices: arg max
F feasible given F0

∫
udF

where ‘F feasible given F0’
def’n⇐⇒ ∃ signal S such that FS = F .

Fact: F feasible given F0
⇐⇒ F a mean-preserving contraction of F0( def’n⇐⇒

∫ x
0 F ≤

∫ x
0 F0 ∀x ∈ [0, 1) &

∫ 1
0 F =

∫ 1
0 F0

)
.

8



Kolotilin’s (2014) reformulation
Model: max

S∈{signals}
ES

[
u(random posterior mean)

]
=

∫
udFS

where (random posterior mean induced by S) ∼ FS .

Reformulation: sender chooses FS directly.

Optimal choices: arg max
F feasible given F0

∫
udF

where ‘F feasible given F0’
def’n⇐⇒ ∃ signal S such that FS = F .

Fact: F feasible given F0
⇐⇒ F a mean-preserving contraction of F0( def’n⇐⇒

∫ x
0 F ≤

∫ x
0 F0 ∀x ∈ [0, 1) &

∫ 1
0 F =

∫ 1
0 F0

)
.

8



Kolotilin’s (2014) reformulation
Model: max

S∈{signals}
ES

[
u(random posterior mean)

]
=

∫
udFS

where (random posterior mean induced by S) ∼ FS .

Reformulation: sender chooses FS directly.

Optimal choices: arg max
F feasible given F0

∫
udF

where ‘F feasible given F0’
def’n⇐⇒ ∃ signal S such that FS = F .

Fact: F feasible given F0
⇐⇒ F a mean-preserving contraction of F0( def’n⇐⇒

∫ x
0 F ≤

∫ x
0 F0 ∀x ∈ [0, 1) &

∫ 1
0 F =

∫ 1
0 F0

)
.

8



Informativeness

Definition: F is less informative than G
iff

∫
ψdF ≤

∫
ψdG for every convex ψ : [0, 1] → R.

In the spirit of D. Blackwell.

Fact: F less informative than G
⇐⇒ F a mean-preserving contraction of G.

‘Less informative’ is demanding:

frequently F is not less informative than G and
G is not less informative than F .
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More comparisons

F strictly less informative than G
def’n⇐⇒ F less informative than G & F ̸= G.

G (str.) more informative than F
def’n⇐⇒ F (str.) less informative than G.

In principle, argmax can have ≥ 2 elements

=⇒ must compare sets of dist’ns.

This talk: assume all argmaxes singleton.
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‘Increasing’ comparative statics

Question : for interim payoffs u, v : [0, 1] → R,
what must we assume to conclude that

arg max
F feas. given F0

∫
udF is less

info’tive than
arg max

F feas. given F0

∫
vdF

whatever the prior F0?

11



‘Non-decreasing’ comparative statics

‘Increasing’ is a lot to ask. Begin with non-decreasing:

Question′: for interim payoffs u, v : [0, 1] → R,
what must we assume to conclude that

arg max
F feas. given F0

∫
udF is not str. more

info’tive than
arg max

F feas. given F0

∫
vdF

whatever the prior F0?
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Coarse comparative convexity

Definition: for u, v : [0, 1] → R,

u is coarsely less convex than v iff

for any x < y in [0, 1] such that

u(αx+(1−α)y) ≤ αu(x)+(1−α)u(y)

holds ∀ α ∈ (0, 1)

,

v(αx+(1−α)y) ≤ αv(x)+(1−α)v(y)

also holds ∀ α ∈ (0, 1),

x y

u

and for each α, former ineq. strict =⇒ latter ineq. strict.
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Sufficient conditions
Lemma: if v(x) = Φ(u(x), x) ∀x

where Φ convex & Φ(·, x) str. incr. ∀x,
then u is coarsely less convex than v.

15



Sufficient conditions
Lemma: if v(x) = Φ(u(x), x) ∀x

where Φ convex & Φ(·, x) str. incr. ∀x,
then u is coarsely less convex than v.

Proof: u(αx+ (1 − α)y) ≤(<) αu(x) + (1 − α)u(y) =⇒

v(αx+ (1 − α)y) ≤(<) Φ
(
αu(x) + (1 − α)u(y), αx+ (1 − α)y

)
≤ αv(x) + (1 − α)v(y)

by str. monotonicity & convexity. ■
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where Φ convex & Φ(·, x) str. incr. ∀x,
then u is coarsely less convex than v.

Special case:
(usual ‘less convex than’)

v = ϕ ◦ u for a convex
& str. incr.
ϕ : R → R(

⇐⇒ u′′ · |v′| ≤ v′′ · |u′|
if u, v are C2

)

↪→ take Φ(k, x) = ϕ(k).

Special case:
(from costly info acq. lit)

v = u+ ψ for a convex
ψ : [0, 1] → R
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)
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Application: privately informed receiver

Recall: outside option R ∼ G, density g,
receiver participates iff R ≤ (posterior mean)

=⇒ u(m) = P(R ≤ m) = G(m).

G improves in MLR sense e.g. µ ↗ if G = N(µ, σ2)
def’n⇐⇒ g′/g ↗ pointwise

⇐⇒ G′′/G′ ↗ pointwise

⇐⇒ G becomes more convex (in usual sense).

So by Lemma, improved outside-option dist’n G
=⇒ coarsely more convex u.
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‘Non-decreasing’ comparative statics

Theorem 1: For upper semi-continuous u, v : [0, 1] → R,
the following are equivalent:

– u is coarsely less convex than v.

– For any prior dist’n F0,

arg max
F feas. given F0

∫
udF is not str. more

info’tive than arg max
F feas. given F0

∫
vdF.

17



Proof idea
Th’m 1: For usc u & v, u is coarsely less convex than v iff

arg max
F feas. given F0

∫
udF is not str. more

info’tive than arg max
F feas. given F0

∫
vdF ∀F0.

Necessity of ‘u coarsely less convex than v’: straightforward.

Sufficiency: u coarsely less convex than v

=⇒ U(F ) :=
∫
udF interval-dominated by V (F ) :=

∫
vdF

=⇒ arg max
F feas. given F0

U(F ) is not str. more
info’tive than arg max

F feas. given F0

V (F )

1st implication: non-trivial.

2nd implication: a theorem of Quah and Strulovici (2009, 2007).
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2nd implication: a theorem of Quah and Strulovici (2009, 2007).
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Plan

The persuasion model

‘Non-decreasing’ comparative statics

‘Increasing’ comparative statics

A Ω 19



Halfway there

By Theorem 1, ‘more convexity’ is necessary & not sufficient
for increasing comparative statics.

What can go wrong? Example at end of talk (if time allows).

Remaining question: what further restriction on u is needed?
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Regularity

From now on, focus on regular u.

‘Regular’: slightly weaker than twice contin’sly differentiable.

(def’n: slide 33)

21



Crater property
Definition: regular u : [0, 1] → R sat’s the crater property iff

∀ x < y < z < w s.t. u


concave on [x, y]
str. convex on [y, z]
concave on [z, w],

have u′(x) ̸= u′(w), & tangents at x & at w cross at (X,Y )

s.t. (i) y ≤ X ≤ z & (ii) Y ≤ u(X).

x y z w

u
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Crater property
Definition: regular u : [0, 1] → R sat’s the crater property iff

∀ x < y < z < w s.t. u


concave on [x, y]
str. convex on [y, z]
concave on [z, w],

have u′(x) ̸= u′(w), & tangents at x & at w cross at (X,Y )

s.t. (i) y ≤ X ≤ z & (ii) Y ≤ u(X).

x y z wX

Y
u

(violated)
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When does the crater property hold?

Crater property is strong.

↪→ e.g. rules out multiple interior local maxima.

23



When does the crater property hold?

Sufficient conditions:

– ‘S’ shape: str. convex–concave or concave–str. convex.

– ‘bell’ shape: str. convex–concave–str. convex.
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Application: privately informed receiver

Recall: outside option R ∼ G, density g,
receiver participates iff R ≤ (posterior mean)

=⇒ u(m) = P(R ≤ m) = G(m).

G unimodal e.g. G = N(µ, σ2)

def’n⇐⇒ g

{
str. incr. on [0, x]
str. decr. on [x, 1]

}
for some x

⇐⇒ G

{
str. convex on [0, x]
str. concave on [x, 1]

}
for some x

=⇒ u S-shaped =⇒ u obeys crater property.
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‘Increasing’ comparative statics

Theorem 2: For a regular u : [0, 1] → R,
the following are equivalent:

– u satisfies the crater property.

– For every regular & coarsely more convex v : [0, 1] → R
and every atomless convex-support F0,

arg max
F feas. given F0

∫
udF is less

info’tive than
arg max

F feas. given F0

∫
vdF.

Ω 25
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Application: privately informed receiver
Recall: outside option R ∼ G, density g,

receiver participates iff R ≤ (posterior mean)

=⇒ u(m) = P(R ≤ m) = G(m).

Recall: G unimodal =⇒ u S-shaped
=⇒ u obeys crater property.

Recall: G improves in MLR sense
⇐⇒ G becomes more convex (in usual sense)
=⇒ u becomes coarsely more convex.
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Application: privately informed receiver
Recall: outside option R ∼ G, density g,

receiver participates iff R ≤ (posterior mean)

=⇒ u(m) = P(R ≤ m) = G(m).

Recall: G unimodal =⇒ u S-shaped
=⇒ u obeys crater property.

Recall: G improves in MLR sense
⇐⇒ G becomes more convex (in usual sense)
=⇒ u becomes coarsely more convex.

By Th’m 2, G unimodal & improves in MLR sense
=⇒ sender provides more info (∀ prior).

↪→ recovers Prop 1 in Kolotilin, Mylovanov and Zapechelnyuk (2022)
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Application: privately informed receiver
Recall: outside option R ∼ G, density g,

receiver participates iff R ≤ (posterior mean)

=⇒ u(m) = P(R ≤ m) = G(m).

Recall: G unimodal =⇒ u S-shaped
=⇒ u obeys crater property.

More generally, if G improves. E.g. g′ ↗ pointwise
⇐⇒ G′′ ↗ pointwise
=⇒ u coarsely more c’vex.
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Application: privately informed receiver
Recall: outside option R ∼ G, density g,

receiver participates iff R ≤ (posterior mean)

=⇒ u(m) = P(R ≤ m) = G(m).

Recall: G unimodal =⇒ u S-shaped
=⇒ u obeys crater property.

Alternatively: if G becomes ‘more diffuse’ in sense that
g becomes less convex (in usual sense).

↪→ generalises Gitmez and Molavi (2023),
who assume binary prior

Ω 26



Proof of sufficiency
Th’m 2: A regular u obeys crater property iff

arg max
F feas. given F0

∫
udF is less

info’tive than
arg max

F feas. given F0

∫
vdF

∀ regular coarsely more c’vex v, ∀ atomless c’vex-supp’t F0.

Bespoke argument, relies on persuasion structure.

↪→ study the dual (Dworczak & Martini, 2019)

Cannot use general comparative-statics results:

they require U(F ) =
∫
udF (interval-)quasi-supermodular

which is super-strong (requires u concave or u str. convex)

(sketch proof of necessity: slide 34)
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Robustness & extensions

– restricted classes of priors F0 (slide 35)

– ‘decreasing’ comparative statics (slide 37)

– constrained persuasion (slide 38)

– shifts of the prior F0 (slide 39)

Ω 28



Application: alignment of interests
Question: alignment ↗ =⇒ info-provision ↗ ?

Answer: yes if control convexity, no otherwise.

Setting: actions a ∈ A, payoffs US(a,m), UR(a,m),
choice A(m) UR-optimal

(
∈ arg max

a∈A
UR(a,m)

)
=⇒ u(m) = US

(
A(m),m

)
.

Example: shift from (a,m) 7→ US(a,m)
to (a,m) 7→ US(a,m) + ϕ

(
UR(a,m)

)
where ϕ str. incr. (‘ alignment ↗ ’)

ϕ convex: u becomes coarsely more convex.
∀ US , UR, & UR-optimal A(·)

ϕ concave: u may become coarsely less convex!
∃ US , UR, & UR-optimal A(·)

( general:
slide 40

)
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Conclusion

Open question in canonical persuasion model:

when does a shift of model parameters cause
sender to choose a more informative signal?

Complete answer:

u obeys crater property + becomes coarsely more convex.

Applied upshot:

– easy-to-check sufficient conditions

– applications (see paper)
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Conclusion

Remaining questions:

– further applications

– case when ≥ 2 moments matter (not just mean).
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Thanks!

x y z wx′ w′

u

v
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Application: details

Detail 1: assume R ⊥⊥ (value of particip’n).

Detail 2: Can sender do better by offering a menu of signals?
No. (Kolotilin, Mylovanov, Zapechelnyuk & Li, 2017, Th’m 1)

(back to slide 7)

32



Regularity: definition

Definition: u : [0, 1] → R is regular iff both

(i) u is contin’s &
possesses contin’s & bounded derivative u′ : (0, 1) → R

(ii) [0, 1] may be partitioned into finitely many intervals
on which u is either affine, str. convex, or str. concave.

Sufficient condition: u twice contin’sly differentiable.

(back to slide 21)
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Sketch proof of necessity

x y z wx′ w′

u

Suppose u regular
& violates crater.

Construct F0:
– atomless
– support [x′, w′]

–
∫ X

0 ξF0(dξ)
F0(X) = x

–
∫ 1

X
ξF0(dξ)

1−F0(X) = w.

Construct v:
– on [0, X], ≥ u

& str. convex
– on [X, 1], = u.
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Sketch proof of necessity

x y z wx′ w′X

Y
u

p

For u, optimal
dist’n F reveals
(only) whether
state ≷ X.

no pooling acr. X.

Proof: ∀ H
less info. than F0,∫

udF
=

∫
pdF u

F -a.e.= p

=
∫
pdF0

p aff. [0, X]
& [X, 1]

≥
∫
pdH p convex

≥
∫
udH p ≥ u. ■
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Sketch proof of necessity

x y z wx′ w′X

Y
u

p

v
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Sketch proof of necessity

X

v

v S-shaped.

=⇒
optimal dist’n G
reveals [0, a),
pools [a, 1].

so pools across X.

Proof: ∀ H
less info. than F0,∫

vdG
=

∫
qdG v

G-a.e.= q

=
∫
qdF0 q aff. [a, 1]

≥
∫
qdH q convex

≥
∫
vdH q ≥ v. ■

(back to slide 27)
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Sketch proof of necessity
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Restricted classes of priors
Th’m 2: crater property necessary if consider all priors F0.

Robustness: necessary even if consider only a single F0:

Prop’n: Provided |suppF0| ≥ 3, ∃ regular u, v : [0, 1] → R
such that u is coarsely less convex than v, but

arg max
F feas. given F0

∫
udF is not less

info’tive than
arg max

F feas. given F0

∫
vdF.

Can choose u M-shaped & v S-shaped.

‘M-shaped’ = concave–str. convex–concave.

(|supp F0| ≤ 2: next slide) (back to slide 28)
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Binary priors

Binary prior: F0 with |suppF0| ≤ 2.

Effectively: state is binary.

Binary priors are special—no need for crater property:

Prop’n: For upper semi-continuous u, v : [0, 1] → R,
the following are equivalent:

– u is coarsely less convex than v.

– For any binary prior dist’n F0,

arg max
F feas. given F0

∫
udF is less

info’tive than
arg max

F feas. given F0

∫
vdF.

(back to slide 28)
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‘Decreasing’ comparative statics
Symmetric counterpart to question answered by Th’m 2:

what ass’ns on v ensure comparative statics

with any coarsely less convex u, whatever the prior F0?

Answer: need super-strong ass’ns:

Prop’n: For a regular v : [0, 1] → R,
the following are equivalent:

– v is either concave or str. convex.

– For every regular & coarsely less convex u : [0, 1] → R
and every atomless convex-support F0,

arg max
F feas. given F0

∫
udF is less

info’tive than
arg max

F feas. given F0

∫
vdF.

(back to slide 28)
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Constrained persuasion

Sender may face constraints on choice of signal. Growing lit.

Two natural constraints:

– only monotone partitional signals

– only signals that send ≤ K messages, for some K ∈ N

Prop’n: in both cases, crater property remains necessary.

(back to slide 28)
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Shifts of the prior

Shifts of prior F0 instead of payoff u.

Interpret’n: change in info available to sender.

Prop’n: there are no F0 ̸= G0 such that

arg max
F feas. given F0

∫
udF is less

info’tive than
arg max

F feas. given G0

∫
udF

for every regular and S-shaped u : [0, 1] → R.

Upshot: comparative statics highly u-sensitive.
No result across all u, not even all S-shaped u.
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Application: alignment of interests, in general

Alignment ↗ : shift from (a,m) 7→ US(a,m)
to (a,m) 7→ Φ

(
US(a,m), UR(a,m),m

)
where Φ an alignment-incr’ing utility transform’n (AIUT):

– utility transformation: Φ(·, ℓ,m) str. incr. ∀ ℓ,m

– alignment-increasing: Φ(k, ·,m) incr. ∀ k,m.

Prop’n: For any convex AIUT Φ,

m 7→ US(A(m),m) is coarsely less convex than

m 7→ Φ
(
US(A(m),m), UR(A(m),m),m

)
∀ US , UR, ∀ UR-optimal A(·).
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Convexity is essential. (Nearly necessary.)

Example: Φ(k, ℓ,m) = k + ϕ(ℓ), where ϕ str. incr.

ϕ convex: prop’n applies.

ϕ concave: ∃ US , UR, & UR-optimal A(·) such that
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