The converse envelope theorem

Ludvig Sinander
University of Oxford

$$
19 \text { July } 2023
$$

paper: doi.org/10.3982/ECTA18119

Envelope theorem: optimal decision-making $\Longrightarrow \boxtimes$ formula.

Textbook intuition: \boxtimes formula \Longleftrightarrow FOC.

Modern envelope theorem of MS02:* almost no assumptions.
\hookrightarrow FOC ill-defined, so need different intuition.

[^0]Envelope theorem: optimal decision-making $\Longrightarrow \boxtimes$ formula.

Textbook intuition: \boxtimes formula \Longleftrightarrow FOC.

Modern envelope theorem of MS02:* almost no assumptions.
\hookrightarrow FOC ill-defined, so need different intuition.

My theorem: with almost no assumptions, \boxtimes formula equivalent to generalised FOC.

- an envelope theorem: FOC $\Longrightarrow \boxtimes$
- a converse:
$\boxtimes \Longrightarrow$ FOC.

[^1]Envelope theorem: optimal decision-making $\Longrightarrow \boxtimes$ formula.

Textbook intuition: \boxtimes formula \Longleftrightarrow FOC.

Modern envelope theorem of MS02:* almost no assumptions.
\hookrightarrow FOC ill-defined, so need different intuition.

My theorem: with almost no assumptions, \boxtimes formula equivalent to generalised FOC.

- an envelope theorem: FOC $\Longrightarrow \boxtimes$
- a converse: $\boxtimes \Longrightarrow$ FOC.

Application to mechanism design.

[^2]
Setting

Agent chooses action x from a set \mathcal{X}.
Objective $f(x, t)$, where $t \in[0,1]$ is a parameter.

No assumptions on \mathcal{X}, \quad almost none on f :
(1) $f(x, \cdot)$ differentiable for each $x \in \mathcal{X}$
(2) $\{f(x, \cdot)\}_{x \in \mathcal{X}}$ absolutely equi-continuous.

Setting

Agent chooses action x from a set \mathcal{X}.
Objective $f(x, t)$, where $t \in[0,1]$ is a parameter.
No assumptions on \mathcal{X}, \quad almost none on f :
(1) $f(x, \cdot)$ differentiable for each $x \in \mathcal{X}$
(2) $\{f(x, \cdot)\}_{x \in \mathcal{X}}$ absolutely equi-continuous.

- a sufficient condition (maintained by MS02):
(a) $f(x, \cdot)$ absolutely continuous $\forall x \in \mathcal{X}$, and
(b) $t \mapsto \sup _{x \in \mathcal{X}}\left|f_{2}(x, t)\right|$ dominated by an integrable f'n.
- a stronger sufficient condition: f_{2} bounded.

Setting

Agent chooses action x from a set \mathcal{X}.
Objective $f(x, t)$, where $t \in[0,1]$ is a parameter.
No assumptions on \mathcal{X}, \quad almost none on f :
(1) $f(x, \cdot)$ differentiable for each $x \in \mathcal{X}$
(2) $\{f(x, \cdot)\}_{x \in \mathcal{X}}$ absolutely equi-continuous.

- a sufficient condition (maintained by MS02):
(a) $f(x, \cdot)$ absolutely continuous $\forall x \in \mathcal{X}$, and
(b) $t \mapsto \sup _{x \in \mathcal{X}}\left|f_{2}(x, t)\right|$ dominated by an integrable f'n.
- a stronger sufficient condition: f_{2} bounded.

Decision rule: $\quad \operatorname{a} \operatorname{map} X:[0,1] \rightarrow \mathcal{X}$.
Associated value function: $\quad V_{X}(t):=f(X(t), t)$.

Envelope theorem

X satisfies the \boxtimes formula iff

$$
V_{X}(t)=V_{X}(0)+\int_{0}^{t} f_{2}(X(s), s) \mathrm{d} s \quad \text { for every } t \in[0,1]
$$

Equivalently: V_{X} is absolutely continuous and

$$
V_{X}^{\prime}(t)=f_{2}(X(t), t) \quad \text { for a.e. } t \in(0,1)
$$

Envelope theorem

X satisfies the \boxtimes formula iff

$$
V_{X}(t)=V_{X}(0)+\int_{0}^{t} f_{2}(X(s), s) \mathrm{d} s \quad \text { for every } t \in[0,1]
$$

Equivalently: V_{X} is absolutely continuous and

$$
V_{X}^{\prime}(t)=f_{2}(X(t), t) \quad \text { for a.e. } t \in(0,1)
$$

X is optimal iff for every $t, \quad X(t)$ maximises $f(\cdot, t)$.
Modern envelope theorem (MS02). ${ }^{\dagger}$
Any optimal decision rule satisfies the \boxtimes formula.

Textbook intuition

Differentiation identity for $V_{X}(t):=f(X(t), t)$:

$$
V_{X}^{\prime}(t)=\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} f(X(t+m), t)\right|_{m=0}}_{\text {'indirect effect' }}+\underbrace{f_{2}(X(t), t)}_{\text {'direct effect' }}
$$

Indirect effect: $\quad t$'s gain from mimicking $t+m$ (for small m).

Textbook intuition

Differentiation identity for $V_{X}(t):=f(X(t), t)$:

$$
V_{X}^{\prime}(t)=\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} f(X(t+m), t)\right|_{m=0}}_{\text {'indirect effect' }}+\underbrace{f_{2}(X(t), t)}_{\text {'direct effect' }}
$$

Indirect effect: $\quad t$'s gain from mimicking $t+m$ (for small m).

$$
\begin{aligned}
\text { indirect effect } & =0 & & (\mathrm{FOC}) \\
V_{X}^{\prime}(t) & =\text { direct effect } & & (\boxtimes \text { formula }) .
\end{aligned}
$$

Textbook intuition

Differentiation identity for $V_{X}(t):=f(X(t), t)$:

$$
V_{X}^{\prime}(t)=\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} f(X(t+m), t)\right|_{m=0}}_{\text {'indirect effect' }}+\underbrace{f_{2}(X(t), t)}_{\text {'direct effect' }}
$$

Indirect effect: $\quad t$'s gain from mimicking $t+m$ (for small m).

$$
\begin{align*}
\text { indirect effect } & =0 \tag{FOC}\\
V_{X}^{\prime}(t) & =\text { direct effect }
\end{align*}
$$

Problem: 'indirect effect' (hence FOC) ill-defined!
$-f(\cdot, t) \& X$ need not be differentiable.

- actions \mathcal{X} need have no convex or topological structure.

The outer first-order condition

Disjuncture: in general, \boxtimes formula \Longleftrightarrow FOC.

- one solution: add strong 'classical' assumptions. (slide 18)

The outer first-order condition

Disjuncture: in general, \boxtimes formula \Longleftrightarrow FOC.

- one solution: add strong 'classical' assumptions. (slide 18)
- my solution: find the correct FOC!

The outer first-order condition

Disjuncture: in general, \boxtimes formula \Longleftrightarrow FOC.

- one solution: add strong 'classical' assumptions. (slide 18)
- my solution: find the correct FOC!

Decision rule X satisfies the outer FOC iff

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}=0 \quad \text { for all } r, t \in(0,1)
$$

Motivation: given decision rule $X:[0,1] \rightarrow \mathcal{X}$,

- type s can 'mimic' $s+m$ by choosing $X(s+m)$.
- oFOC: if types $s \in[r, t]$ do this, it's collectively unprofitable (to first order).

Housekeeping

Housekeeping lemma. Under classical assump'ns, oFOC \Longleftrightarrow classical FOC.
(sketch proof: slide 19)

Housekeeping

Housekeeping lemma. Under classical assump'ns, oFOC \Longleftrightarrow classical FOC.
(sketch proof: slide 19)

Necessity lemma. Any optimal decision rule X
satisfies oFOC \& has $V_{X}(t):=f(X(t), t)$ absolutely continuous.
(sketch proof: slide 20)

Main theorem

Envelope theorem \& converse.
For a decision rule $X:[0,1] \rightarrow \mathcal{X}$, the following are equivalent:
(1) X satisfies the oFOC

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}=0 \quad \text { for all } r, t \in(0,1)
$$

and $V_{X}(t):=f(X(t), t)$ is absolutely continuous.
(2) X satisfies the \boxtimes formula

$$
V_{X}(t)=V_{X}(0)+\int_{0}^{t} f_{2}(X(s), s) \mathrm{d} s \quad \text { for every } t \in[0,1]
$$

Main theorem

Envelope theorem \& converse. For $X:[0,1] \rightarrow \mathcal{X}$, TFAE:
(1) X satisfies the oFOC, \& $V_{X}(t):=f(X(t), t)$ is AC.
(2) X satisfies the \boxtimes formula.
\Longrightarrow : an envelope theorem. Implies the MS02 envelope theorem.
$\Longleftarrow: ~ c o n v e r s e ~ e n v e l o p e ~ t h e o r e m . ~$

The key lemma

Textbook intuition relied on differentiation identity

$$
V_{X}^{\prime}(s)=\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} f(X(s+m), s)\right|_{m=0}}_{\text {'indirect effect' }}+\underbrace{f_{2}(X(s), s)}_{\text {'direct effect' }},
$$

or (integrated \& rearranged)
$\left.\int_{r}^{t} \frac{\mathrm{~d}}{\mathrm{~d} m} f(X(s+m), s)\right|_{m=0} \mathrm{~d} s=V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s$.

The key lemma

Textbook intuition relied on differentiation identity

$$
V_{X}^{\prime}(s)=\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} f(X(s+m), s)\right|_{m=0}}_{\text {'indirect effect' }}+\underbrace{f_{2}(X(s), s)}_{\text {'direct effect'' }},
$$

or (integrated \& rearranged)
$\left.\int_{r}^{t} \frac{\mathrm{~d}}{\mathrm{~d} m} f(X(s+m), s)\right|_{m=0} \mathrm{~d} s=V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s$.
The 'outer' version is valid:
Identity lemma. If V_{X} is AC , then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}=V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s
$$

(Where both sides are well-defined.)

Application: environment

Agent with preferences $f(y, p, t)$ over outcome $y \in \mathcal{Y}$ and payment $p \in \mathbf{R}$.

- \mathcal{Y} partially ordered
- type $t \in[0,1]$ is agent's private info
- assume single-crossing.

An allocation is $Y:[0,1] \rightarrow \mathcal{Y}$.
Y is implementable iff \exists payment rule $P:[0,1] \rightarrow \mathbf{R}$ s.t. (Y, P) is incentive-compatible.

Application: goal

Classical result: implementable \Longleftrightarrow increasing.

$' \Longleftarrow$' is the substantial part. Versions:

	literature
outcomes \mathcal{Y}	$\subseteq \mathbf{R}$
preferences f	quasi-linear

Application: goal

Classical result: implementable \Longleftrightarrow increasing.

$' \Longleftarrow$, is the substantial part. Versions:

	literature	this paper
outcomes \mathcal{Y}	$\subseteq \mathbf{R}$	general
preferences f	quasi-linear	general.

Application: result

Implementability theorem. Under regularity assumptions, any increasing allocation is implementable.

Application: result

Implementability theorem. Under regularity assumptions, any increasing allocation is implementable.

Argument:

- fix an increasing allocation $Y:[0,1] \rightarrow \mathcal{Y}$
- choose a payment rule P so that \boxtimes formula holds

Application: result

Implementability theorem. Under regularity assumptions, any increasing allocation is implementable.

Argument:

- fix an increasing allocation $Y:[0,1] \rightarrow \mathcal{Y}$
- choose a payment rule P so that \boxtimes formula holds
- then by converse envelope theorem, oFOC holds \Longleftrightarrow mechanism (Y, P) is locally IC.
- finally, local IC \Longrightarrow global IC by single-crossing.

Application: example

Monopolist selling information.
Outcomes \mathcal{Y} :
distributions of posterior beliefs, ordered by Blackwell.

Application: example

Monopolist selling information.
Outcomes \mathcal{Y} :
distributions of posterior beliefs, ordered by Blackwell.
By the implementability theorem, any Blackwell-increasing information allocation can be implemented.

Application: details

Regular Y: 'rich' \& 'not too large'.

(def'n: slide 26)

Examples:

- \mathbf{R}^{n} ordered by 'coordinate-wise smaller'
- finite-expectation RVs ordered by 'a.s. smaller'
- distributions of posteriors updated from a given prior ordered by Blackwell.

Application: details

Regular Y: 'rich' \& 'not too large'.
Examples:

- \mathbf{R}^{n} ordered by 'coordinate-wise smaller'
- finite-expectation RVs ordered by 'a.s. smaller'
- distributions of posteriors updated from a given prior ordered by Blackwell.

Regular f :
(a) type derivative f_{3} exists, bounded, continuous in p.
(b) f jointly continuous (when \mathcal{Y} has order topology).

Application: details

Regular Y: 'rich' \& 'not too large'.
Examples:

- \mathbf{R}^{n} ordered by 'coordinate-wise smaller'
- finite-expectation RVs ordered by 'a.s. smaller'
- distributions of posteriors updated from a given prior ordered by Blackwell.

Regular f :
(a) type derivative f_{3} exists, bounded, continuous in p.
(b) f jointly continuous (when \mathcal{Y} has order topology).

Single-crossing f :
(def'n: slide 28)
if type t willing to pay to increase $y \in \mathcal{Y}$, then so is type $t^{\prime}>t$.

Thanks!

Absolute equi-continuity

A family $\left\{\phi_{x}\right\}_{x \in \mathcal{X}}$ of functions $[0,1] \rightarrow \mathbf{R}$ is $A E C$ iff the family

$$
\left\{t \mapsto \sup _{x \in \mathcal{X}}\left|\frac{\phi_{x}(t+m)-\phi_{x}(t)}{m}\right|\right\}_{m>0} \quad \text { is uniformly integrable. }
$$

Name inspired by the following (Fitzpatrick \& Hunt, 2015):
AC-UI lemma. A continuous $\phi:[0,1] \rightarrow \mathbf{R}$ is AC iff

$$
\left\{t \mapsto \frac{\phi(t+m)-\phi(t)}{m}\right\}_{m>0} \quad \text { is uniformly integrable. }
$$

As name 'AEC' suggests, an AEC family

- is (uniformly) equi-continuous
- has AC functions as its members.

The classical approach

Classical assumptions:
$-\mathcal{X}$ is a convex subset of \mathbf{R}^{n}

- action derivative f_{1} exists \& is bounded
- only Lipschitz continuous decision rules X are considered.
(Bad for applications. Especially the Lipschitz restriction!)
\Longrightarrow 'mimicking payoff' $\quad m \mapsto f(X(t+m), t) \quad$ diff'able a.e.
\Longrightarrow FOC well-defined, differentiation identity valid.
Thus \boxtimes formula \Longleftrightarrow FOC.

Sketch proof of the housekeeping lemma

Housekeeping lemma. Under classical assump'ns, oFOC \Longleftrightarrow classical FOC.

Sketch proof of the housekeeping lemma

Housekeeping lemma. Under classical assump'ns, oFOC \Longleftrightarrow classical FOC.

Sketch proof. Fix a decision rule $X:[0,1] \rightarrow \mathcal{X}$.
Classical assump'ns \& Vitali convergence theorem:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}=\left.\int_{r}^{t} \frac{\mathrm{~d}}{\mathrm{~d} m} f(X(s+m), s)\right|_{m=0} \mathrm{~d} s
$$

Sketch proof of the housekeeping lemma

Housekeeping lemma. Under classical assump'ns, oFOC \Longleftrightarrow classical FOC.

Sketch proof. Fix a decision rule $X:[0,1] \rightarrow \mathcal{X}$.
Classical assump'ns \& Vitali convergence theorem:

$$
\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}}_{\begin{array}{c}
=0 \text { for all } r, t \\
\text { iff oFOC holds }
\end{array}}=\left.\int_{r}^{t} \frac{\mathrm{~d}}{\mathrm{~d} m} f(X(s+m), s)\right|_{m=0} \mathrm{~d} s
$$

Sketch proof of the housekeeping lemma

Housekeeping lemma. Under classical assump'ns, oFOC \Longleftrightarrow classical FOC.

Sketch proof. Fix a decision rule $X:[0,1] \rightarrow \mathcal{X}$.
Classical assump'ns \& Vitali convergence theorem:

$$
\begin{aligned}
\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}}_{\begin{array}{c}
0 \text { for all } r, t \\
\text { iff oFOC holds }
\end{array}} & =\underbrace{\text { iff classical FOC holds. }}_{\begin{array}{c}
=0 \text { for all } r, t \\
\left.\int_{r}^{t} \frac{\mathrm{~d}}{\mathrm{~d} m} f(X(s+m), s)\right|_{m=0} \mathrm{~d} s
\end{array}}
\end{aligned}
$$

Sketch proof of the necessity lemma

Necessity lemma. Any optimal decision rule X satisfies the oFOC \& has $V_{X}(t):=f(X(t), t)$ AC.

Sketch proof. X optimal \& $\{f(x, \cdot)\}_{x \in \mathcal{X}}$ AEC $\Longrightarrow V_{X}$ AC.

Sketch proof of the necessity lemma

Necessity lemma. Any optimal decision rule X satisfies the oFOC \& has $V_{X}(t):=f(X(t), t)$ AC.

Sketch proof. X optimal \& $\{f(x, \cdot)\}_{x \in \mathcal{X}}$ AEC $\Longrightarrow V_{X}$ AC.
Since X optimal, have for any s and $m>0>m^{\prime}$ that

$$
\frac{f(X(s+m), s)-f(X(s), s)}{m} \leq 0 \leq \frac{f\left(X\left(s+m^{\prime}\right), s\right)-f(X(s), s)}{m^{\prime}}
$$

Integrating over (r, t) and letting $m, m^{\prime} \rightarrow 0$,
both sides (in fact) converge to same limit:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0} \leq 0 \leq\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}
$$

Sketch proof of the identity lemma I

$$
\begin{array}{rrr}
\text { For } m>0, & \frac{V_{X}(t+m)-V_{X}(t)}{m} \\
= & \frac{f(X(t+m), t+m)-f(X(t+m), t)}{m} \\
+ & \frac{f(X(t+m), t)-f(X(t), t)}{m}
\end{array}
$$

Sketch proof of the identity lemma I

For $m>0$, write

$$
\left.\frac{V_{X}(t+m)-V_{X}(t)}{m}\right\}=: \phi_{m}(t)
$$

$$
\left.=\quad \frac{f(X(t+m), t+m)-f(X(t+m), t)}{m}\right\}=: \psi_{m}(t)
$$

$$
\left.+\quad \frac{f(X(t+m), t)-f(X(t), t)}{m}\right\}=: \chi_{m}(t)
$$

Sketch proof of the identity lemma I

For $m>0$, write

$$
\left.\frac{V_{X}(t+m)-V_{X}(t)}{m}\right\}=: \phi_{m}(t)
$$

$$
\left.=\quad \frac{f(X(t+m), t+m)-f(X(t+m), t)}{m}\right\}=: \psi_{m}(t)
$$

$$
\left.+\quad \frac{f(X(t+m), t)-f(X(t), t)}{m}\right\}=: \chi_{m}(t)
$$

$\lim _{m \downarrow 0} \int_{r}^{t} \chi_{m}=\left.\frac{\mathrm{d}}{\mathrm{d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0} \quad$ if limit exists.
Must show: limit exists \& equals

$$
V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s
$$

Sketch proof of the identity lemma II

$$
\begin{array}{rlrl}
\frac{V_{X}(t+m)-V_{X}(t)}{m} \\
= & \frac{f(X(t+m), t+m)-f(X(t+m), t)}{m} \\
+ & \frac{f(X(t+m), t)-f(X(t), t)}{m} \\
+ & =: \phi_{m}(t) \\
& =\psi_{m}(t) \\
\chi_{m}(t) .
\end{array}
$$

$\left\{\psi_{m}\right\}_{m>0}$ need not converge a.e. (Even with strong assump'ns.)
But consider $\quad \psi_{m}^{\star}(t):=\frac{f(X(t), t)-f(X(t), t-m)}{m}$.

Sketch proof of the identity lemma II

$$
\begin{array}{rlrl}
& \frac{V_{X}(t+m)-V_{X}(t)}{m} \\
= & \frac{f(X(t+m), t+m)-f(X(t+m), t)}{m} \\
+ & \frac{f(X(t+m), t)-f(X(t), t)}{m} \\
+ & = & \phi_{m}(t) \\
\psi_{m}(t) \\
\chi_{m}(t) .
\end{array}
$$

$\left\{\psi_{m}\right\}_{m>0}$ need not converge a.e. (Even with strong assump'ns.)
But consider $\quad \psi_{m}^{\star}(t):=\frac{f(X(t), t)-f(X(t), t-m)}{m}$.
$\left\{\psi_{m}^{\star}\right\}_{m>0}$ is UI \& converges pointwise to $t \mapsto f_{2}(X(t), t)$. And

$$
\begin{array}{rlrl}
\int_{r}^{t} \psi_{m}=\int_{r+m}^{t+m} \psi_{m}^{\star} & =\int_{r}^{t} \psi_{m}^{\star}+\left(\int_{t}^{t+m} \psi_{m}^{\star}-\int_{r}^{r+m} \psi_{m}^{\star}\right) \\
& =\int_{r}^{t} \psi_{m}^{\star}+\mathrm{o}(1) & \text { by UI. }
\end{array}
$$

Sketch proof of the identity lemma III

$$
\left.\begin{array}{rl}
\left.\frac{V_{X}(t+m)-V_{X}(t)}{m}\right\} & =: \phi_{m}(t) \\
\left.=\quad \frac{f(X(t+m), t+m)-f(X(t+m), t)}{m}\right\} & =: \psi_{m}(t) \\
+\quad \frac{f(X(t+m), t)-f(X(t), t)}{m}
\end{array}\right\}=: \chi_{m}(t) .
$$

$V_{X} \mathrm{AC} \Longrightarrow\left\{\phi_{m}\right\}_{m>0}$ UI \& converges a.e. to V_{X}^{\prime}.

Sketch proof of the identity lemma III

$$
\left.\begin{array}{rl}
\left.\frac{V_{X}(t+m)-V_{X}(t)}{m}\right\} & =: \phi_{m}(t) \\
\left.=\quad \frac{f(X(t+m), t+m)-f(X(t+m), t)}{m}\right\} & =: \psi_{m}(t) \\
+\quad \frac{f(X(t+m), t)-f(X(t), t)}{m}
\end{array}\right\}=: \chi_{m}(t) .
$$

$V_{X} \mathrm{AC} \Longrightarrow\left\{\phi_{m}\right\}_{m>0}$ UI \& converges a.e. to V_{X}^{\prime}. So

$$
\lim _{m \downarrow 0} \int_{r}^{t} \chi_{m}=\lim _{m \downarrow 0} \int_{r}^{t}\left[\phi_{m}-\psi_{m}\right]=\lim _{m \downarrow 0} \int_{r}^{t}\left[\phi_{m}-\psi_{m}^{\star}\right]
$$

Sketch proof of the identity lemma III

$$
\begin{aligned}
&\left.\frac{V_{X}(t+m)-V_{X}(t)}{m}\right\}=: \phi_{m}(t) \\
&=\left.\frac{f(X(t+m), t+m)-f(X(t+m), t)}{m}\right\} \\
&\left.+\quad \frac{f(X(t+m), t)-f(X(t), t)}{m}\right\}=: \psi_{m}(t) \\
& \chi_{m}(t) .
\end{aligned}
$$

$\int_{r}^{t} \psi_{m}=\int_{r}^{t} \psi_{m}^{\star}+\mathrm{o}(1), \quad\left\{\psi_{m}^{\star}\right\}_{m>0}$ UI \& converges pointwise to $t \mapsto f_{2}(X(t), t)$.
$V_{X} \mathrm{AC} \Longrightarrow\left\{\phi_{m}\right\}_{m>0}$ UI \& converges a.e. to V_{X}^{\prime}. So

$$
\lim _{m \downarrow 0} \int_{r}^{t} \chi_{m}=\lim _{m \downarrow 0} \int_{r}^{t}\left[\phi_{m}-\psi_{m}\right]=\lim _{m \downarrow 0} \int_{r}^{t}\left[\phi_{m}-\psi_{m}^{\star}\right]
$$

(Vitali) $=\int_{r}^{t} \lim _{m \downarrow 0}\left[\phi_{m}-\psi_{m}^{\star}\right]$

Sketch proof of the identity lemma III

$$
\begin{aligned}
&\left.\frac{V_{X}(t+m)-V_{X}(t)}{m}\right\}=: \phi_{m}(t) \\
&=\left.\frac{f(X(t+m), t+m)-f(X(t+m), t)}{m}\right\} \\
&\left.+\quad \frac{f(X(t+m), t)-f(X(t), t)}{m}\right\}=: \psi_{m}(t) \\
& \chi_{m}(t) .
\end{aligned}
$$

$\int_{r}^{t} \psi_{m}=\int_{r}^{t} \psi_{m}^{\star}+\mathrm{o}(1), \quad\left\{\psi_{m}^{\star}\right\}_{m>0}$ UI \& converges pointwise to $t \mapsto f_{2}(X(t), t)$.
$V_{X} \mathrm{AC} \Longrightarrow\left\{\phi_{m}\right\}_{m>0}$ UI \& converges a.e. to V_{X}^{\prime}. So

$$
\begin{aligned}
\lim _{m \downarrow 0} \int_{r}^{t} \chi_{m} & =\lim _{m \downarrow 0} \int_{r}^{t}\left[\phi_{m}-\psi_{m}\right]=\lim _{m \downarrow 0} \int_{r}^{t}\left[\phi_{m}-\psi_{m}^{\star}\right] \\
\text { (Vitali) } & =\int_{r}^{t} \lim _{m \downarrow 0}\left[\phi_{m}-\psi_{m}^{\star}\right]=\int_{r}^{t}\left[V_{X}^{\prime}(s)-f_{2}(X(s), s)\right] \mathrm{d} s
\end{aligned}
$$

Sketch proof of the identity lemma III

$$
\begin{aligned}
&\left.\frac{V_{X}(t+m)-V_{X}(t)}{m}\right\}=: \phi_{m}(t) \\
&=\left.\frac{f(X(t+m), t+m)-f(X(t+m), t)}{m}\right\} \\
&\left.+\quad \frac{f(X(t+m), t)-f(X(t), t)}{m}\right\}=: \psi_{m}(t) \\
& \chi_{m}(t) .
\end{aligned}
$$

$\int_{r}^{t} \psi_{m}=\int_{r}^{t} \psi_{m}^{\star}+\mathrm{o}(1), \quad\left\{\psi_{m}^{\star}\right\}_{m>0}$ UI \& converges pointwise to $t \mapsto f_{2}(X(t), t)$.
$V_{X} \mathrm{AC} \Longrightarrow\left\{\phi_{m}\right\}_{m>0}$ UI \& converges a.e. to V_{X}^{\prime}. So

$$
\begin{aligned}
\lim _{m \downarrow 0} \int_{r}^{t} \chi_{m} & =\lim _{m \downarrow 0} \int_{r}^{t}\left[\phi_{m}-\psi_{m}\right]=\lim _{m \downarrow 0} \int_{r}^{t}\left[\phi_{m}-\psi_{m}^{\star}\right] \\
(\text { Vitali }) & =\int_{r}^{t} \lim _{m \downarrow 0}\left[\phi_{m}-\psi_{m}^{\star}\right]=\int_{r}^{t}\left[V_{X}^{\prime}(s)-f_{2}(X(s), s)\right] \mathrm{d} s \\
(\text { FToC }) & =V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s .
\end{aligned}
$$

Proof of the main theorem

Identity lemma. If V_{X} is AC , then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}=V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s
$$

Proof of the main theorem

Identity lemma. If V_{X} is AC , then

$$
\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}}_{\begin{array}{c}
=0 \text { for all } r, t \\
\text { iff oFOC holds. }
\end{array}}=V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s
$$

Proof of the main theorem

Identity lemma. If V_{X} is AC , then

$$
\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}}_{\begin{array}{c}
=0 \text { for all } r, t \\
\text { iff oFOC holds. }
\end{array}}=\underbrace{\text { iff } \boxtimes \text { formula holds. }}_{\begin{array}{c}
=0 \text { for all } r, t \\
V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s
\end{array}}
$$

Proof of the main theorem

Identity lemma. If V_{X} is AC , then

$$
\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}}_{\begin{array}{c}
=0 \text { for all } r, t \\
\text { iff oFOC holds. }
\end{array}}=\underbrace{V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s}_{\begin{array}{c}
=0 \text { for all } r, t \\
\text { iff } \boxtimes \text { formula holds. }
\end{array}}
$$

Proof of main theorem. X satisfies the oFOC $\& V_{X}$ is AC \Longrightarrow identity lemma applies. So oFOC $\Longrightarrow \boxtimes$ formula.

Proof of the main theorem

Identity lemma. If V_{X} is AC , then

$$
\underbrace{\left.\frac{\mathrm{d}}{\mathrm{~d} m} \int_{r}^{t} f(X(s+m), s) \mathrm{d} s\right|_{m=0}}_{\begin{array}{c}
=0 \text { for all } r, t \\
\text { iff oFOC holds. }
\end{array}}=\underbrace{\text {. }}_{\begin{array}{c}
=0 \text { for all } r, t \\
V_{X}(t)-V_{X}(r)-\int_{r}^{t} f_{2}(X(s), s) \mathrm{d} s \\
\text { iff formula holds. }
\end{array}}
$$

Proof of main theorem. X satisfies the oFOC \& V_{X} is AC \Longrightarrow identity lemma applies. So oFOC $\Longrightarrow \boxtimes$ formula.
X satisfies the \boxtimes formula $\Longrightarrow V_{X}$ is AC (by Lebesgue's FToC) \Longrightarrow identity lemma applies. So \boxtimes formula \Longrightarrow oFOC. \square

Application: existing results

$-\mathcal{Y} \subseteq \mathbf{R}$

- classical assump'ns
- no classical assump'ns
- general \mathcal{Y}
- quasi-linear f
- general f
$\left\{\begin{array}{l}\text { Mirrlees (1976), Spence (1974), } \\ \text { Guesnerie and Laffont (1984) }\end{array}\right.$
Nöldeke and Samuelson (2018)
$\left\{\begin{array}{l}\text { Matthews and Moore (1987), } \\ \text { García (2005) }\end{array}\right.$ this paper.

Application: outcome regularity

A set \mathcal{A} partially ordered by \lesssim is
(1) order-dense-in-itself iff for any $a<a^{\prime}$ in \mathcal{A}, there is a $b \in \mathcal{A}$ such that $a<b<a^{\prime}$,
(2) chain-separable iff for each chain $C \subseteq \mathcal{A}$, there is a countable set $B \subseteq \mathcal{A}$ that is order-dense in $C,{ }^{\ddagger}$
(3) countably chain-complete iff every countable chain in \mathcal{A} with a lower (upper) bound in \mathcal{A} has an infimum (a supremum) in \mathcal{A}.
(1) \& (2): \mathcal{A} 'rich'. (3): \mathcal{A} 'not too large'.

Definition. \mathcal{Y} is regular iff it satisfies properties (1)-(3).
\hookrightarrow back to slide 15
${ }^{\ddagger} B \subseteq \mathcal{A}$ is order-dense iff for any $a<a^{\prime}$ in $\mathcal{A}, \exists b \in B$ s.t. $a \lesssim b \lesssim a^{\prime}$.

Application: preference regularity

Order topology on a set \mathcal{A} partially ordered by \lesssim : the topology generated by the open order rays

$$
\{b \in \mathcal{A}: b<a\} \quad \text { and } \quad\{b \in \mathcal{A}: a<b\} .
$$

Definition. f is regular iff
(a) type derivative f_{3} exists $\&$ is bounded $\&$ continuous in p
(b) for any chain $\mathcal{C} \subseteq \mathcal{Y}, \quad f$ jointly continuous on $\mathcal{C} \times \mathbf{R} \times[0,1]$ when \mathcal{C} has relative top'gy inherited from order top'gy on \mathcal{Y}.
\hookrightarrow back to slide 15

Application: single-crossing

Definition. For $\phi:[0,1] \rightarrow \mathbf{R}$, upper \& lower derivatives

$$
\begin{aligned}
& \mathrm{D}^{\star} \phi(t):=\limsup _{m \rightarrow 0} \frac{\phi(t+m)-\phi(t)}{m} \\
& \mathrm{D}_{\star} \phi(t):=\liminf _{m \rightarrow 0} \frac{\phi(t+m)-\phi(t)}{m} .
\end{aligned}
$$

Partial upper/lower derivatives: $\left(\mathrm{D}^{\star}\right)_{i} \&\left(\mathrm{D}_{\star}\right)_{i}$.

Definition. f is single-crossing iff for any increasing $Y:[0,1] \rightarrow \mathcal{Y} \quad \& \quad$ any $P:[0,1] \rightarrow \mathbf{R}$, mis-reporting payoff $U(r, t):=f(Y(r), P(r), t)$ satisfies

$$
\begin{array}{llll}
& \left(\mathrm{D}^{\star}\right)_{1} U(t, t) \geq 0 & \text { implies } & \left(\mathrm{D}_{\star}\right)_{1} U\left(t, t^{\prime}\right)>0
\end{array} \text { for } t^{\prime}>t .
$$

References I

Fitzpatrick, P. M., \& Hunt, B. R. (2015). Absolute continuity of a function and uniform integrability of its divided differences. American Mathematical Monthly, 122(4), 362-366.
https://doi.org/10.4169/amer.math.monthly.122.04.362
García, D. (2005). Monotonicity in direct revelation mechanisms.
Economics Letters, 88(1), 21-26.
https://doi.org/10.1016/j.econlet.2004.12.022
Guesnerie, R., \& Laffont, J.-J. (1984). A complete solution to a class of principal-agent problems with an application to the control of a self-managed firm. Journal of Public Economics, 25(3), 329-369.
https://doi.org/10.1016/0047-2727(84)90060-4

References II

Matthews, S., \& Moore, J. (1987). Monopoly provision of quality and warranties: An exploration in the theory of multidimensional screening. Econometrica, 55(2), 441-467. https://doi.org/10.2307/1913245
Milgrom, P., \& Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2), 583-601. https://doi.org/10.1111/1468-0262.00296
Mirrlees, J. A. (1976). Optimal tax theory: A synthesis. Journal of Public Economics, 6(4), 327-358. https://doi.org/10.1016/0047-2727(76)90047-5
Nöldeke, G., \& Samuelson, L. (2018). The implementation duality. Econometrica, 86(4), 1283-1324. https://doi.org/10.3982/ECTA13307

References III

Spence, M. (1974). Competitive and optimal responses to signals:
An analysis of efficiency and distribution. Journal of
Economic Theory, 7(3), 296-332.
https://doi.org/10.1016/0022-0531(74)90098-2

[^0]: *Milgrom, P., \& Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2), 583-601. https://doi.org/10.1111/1468-0262.00296

[^1]: *Milgrom, P., \& Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2), 583-601. https://doi.org/10.1111/1468-0262.00296

[^2]: *Milgrom, P., \& Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2), 583-601. https://doi.org/10.1111/1468-0262.00296

