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Envelope theorem: optimal decision-making =⇒ B formula.

Textbook intuition: B formula ⇐⇒ FOC.

Modern envelope theorem of MS02:∗ almost no assumptions.

↪→ FOC ill-defined, so need different intuition.

My theorem: with almost no assumptions,
B formula equivalent to generalised FOC.

– an envelope theorem: FOC =⇒ B
– a converse: B =⇒ FOC.

Application to mechanism design.

∗Milgrom, P., & Segal, I. (2002). Envelope theorems for arbitrary choice
sets. Econometrica, 70(2), 583–601. https://doi.org/10.1111/1468-0262.00296
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Setting
Agent chooses action x from a set X .
Objective f(x, t), where t ∈ [0, 1] is a parameter.

No assumptions on X , almost none on f :

(1) f(x, ·) differentiable for each x ∈ X

(2) {f(x, ·)}x∈X absolutely equi-continuous. (def’n: slide 17)

– a sufficient condition (maintained by MS02):
(a) f(x, ·) absolutely continuous ∀x ∈ X , and
(b) t 7→ supx∈X |f2(x, t)| dominated by an integrable f’n.

– a stronger sufficient condition: f2 bounded.

Decision rule: a map X : [0, 1] → X .

Associated value function: VX(t) := f(X(t), t).
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Envelope theorem

X satisfies the B formula iff

VX(t) = VX(0) +
∫ t

0
f2(X(s), s)ds for every t ∈ [0, 1].

Equivalently: VX is absolutely continuous and

V ′
X(t) = f2(X(t), t) for a.e. t ∈ (0, 1).

X is optimal iff for every t, X(t) maximises f(·, t).

Modern envelope theorem (MS02).†
Any optimal decision rule satisfies the B formula.

†Really a slight refinement of MS02.
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Textbook intuition
Differentiation identity for VX(t) := f(X(t), t):

V ′
X(t) = d

dmf(X(t+m), t)
∣∣∣∣
m=0︸ ︷︷ ︸

‘indirect effect’

+ f2(X(t), t)︸ ︷︷ ︸
‘direct effect’

.

Indirect effect: t’s gain from mimicking t+m (for small m).

indirect effect = 0 (FOC)
⇐⇒ V ′

X(t) = direct effect (B formula).

Problem: ‘indirect effect’ (hence FOC) ill-defined!

– f(·, t) & X need not be differentiable.

– actions X need have no convex or topological structure.
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The outer first-order condition
Disjuncture: in general, B formula ⇍⇒ FOC.

– one solution: add strong ‘classical’ assumptions. (slide 18)

– my solution: find the correct FOC!

Decision rule X satisfies the outer FOC iff

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

= 0 for all r, t ∈ (0, 1).

Motivation: given decision rule X : [0, 1] → X ,

– type s can ‘mimic’ s+m by choosing X(s+m).

– oFOC: if types s ∈ [r, t] do this,
it’s collectively unprofitable (to first order).
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– one solution: add strong ‘classical’ assumptions. (slide 18)

– my solution: find the correct FOC!

Decision rule X satisfies the outer FOC iff

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

= 0 for all r, t ∈ (0, 1).

Motivation: given decision rule X : [0, 1] → X ,

– type s can ‘mimic’ s+m by choosing X(s+m).

– oFOC: if types s ∈ [r, t] do this,
it’s collectively unprofitable (to first order).

6



Housekeeping

Housekeeping lemma. Under classical assump’ns,
oFOC ⇐⇒ classical FOC.

(sketch proof: slide 19)

Necessity lemma. Any optimal decision rule X
satisfies oFOC & has VX(t) := f(X(t), t) absolutely continuous.

(sketch proof: slide 20)
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Main theorem

Envelope theorem & converse.
For a decision rule X : [0, 1] → X , the following are equivalent:

(1) X satisfies the oFOC

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

= 0 for all r, t ∈ (0, 1),

and VX(t) := f(X(t), t) is absolutely continuous.

(2) X satisfies the B formula

VX(t) = VX(0) +
∫ t

0
f2(X(s), s)ds for every t ∈ [0, 1].
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Main theorem

Envelope theorem & converse. For X : [0, 1] → X , TFAE:
(1) X satisfies the oFOC, & VX(t) := f(X(t), t) is AC.
(2) X satisfies the B formula.

=⇒: an envelope theorem.
Implies the MS02 envelope theorem.

⇐=: converse envelope theorem.
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The key lemma
Textbook intuition relied on differentiation identity

V ′
X(s) = d

dmf(X(s+m), s)
∣∣∣∣
m=0︸ ︷︷ ︸

‘indirect effect’

+ f2(X(s), s)︸ ︷︷ ︸
‘direct effect’

,

or (integrated & rearranged)∫ t

r

d
dmf(X(s+m), s)

∣∣∣∣
m=0

ds = VX(t)−VX(r)−
∫ t

r
f2(X(s), s)ds.

The ‘outer’ version is valid:

Identity lemma. If VX is AC, then
d

dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

= VX(t)−VX(r)−
∫ t

r
f2(X(s), s)ds.

(Where both sides are well-defined.) (sketch proof: slide 21)
(proof of th’m: slide 24)
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Application: environment

Agent with preferences f(y, p, t) over
outcome y ∈ Y and payment p ∈ R.

– Y partially ordered

– type t ∈ [0, 1] is agent’s private info

– assume single-crossing.

An allocation is Y : [0, 1] → Y.

Y is implementable iff ∃ payment rule P : [0, 1] → R
s.t. (Y, P ) is incentive-compatible.

11



Application: goal

Classical result: implementable ⇐⇒ increasing.

‘⇐=’ is the substantial part. Versions: (lit: slide 25)

literature

this paper

outcomes Y ⊆ R

general

preferences f quasi-linear

general.
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Application: result

Implementability theorem. Under regularity assumptions,
any increasing allocation is implementable.

Argument:

– fix an increasing allocation Y : [0, 1] → Y

– choose a payment rule P so that B formula holds

– then by converse envelope theorem, oFOC holds
⇐⇒ mechanism (Y, P ) is locally IC.

– finally, local IC =⇒ global IC by single-crossing.

Ω 13
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Application: example

Monopolist selling information.

Outcomes Y:
distributions of posterior beliefs, ordered by Blackwell.

By the implementability theorem,
any Blackwell-increasing information allocation
can be implemented.

Ω 14
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Application: details
Regular Y: ‘rich’ & ‘not too large’. (def’n: slide 26)

Examples:

– Rn ordered by ‘coordinate-wise smaller’

– finite-expectation RVs ordered by ‘a.s. smaller’

– distributions of posteriors updated from a given prior
ordered by Blackwell.

Regular f : (def’n: slide 27)

(a) type derivative f3 exists, bounded, continuous in p.

(b) f jointly continuous (when Y has order topology).

Single-crossing f : (def’n: slide 28)
if type t willing to pay to increase y ∈ Y, then so is type t′ > t.

Ω 15
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Thanks!
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Absolute equi-continuity
A family {ϕx}x∈X of functions [0, 1] → R is AEC iff the family{

t 7→ sup
x∈X

∣∣∣∣ϕx(t+m) − ϕx(t)
m

∣∣∣∣
}
m>0

is uniformly integrable.

Name inspired by the following (Fitzpatrick & Hunt, 2015):

AC–UI lemma. A continuous ϕ : [0, 1] → R is AC iff{
t 7→ ϕ(t+m) − ϕ(t)

m

}
m>0

is uniformly integrable.

As name ‘AEC’ suggests, an AEC family

– is (uniformly) equi-continuous

– has AC functions as its members. ↪→ back to slide 3
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The classical approach

Classical assumptions:

– X is a convex subset of Rn

– action derivative f1 exists & is bounded

– only Lipschitz continuous decision rules X are considered.

(Bad for applications. Especially the Lipschitz restriction!)

=⇒ ‘mimicking payoff’ m 7→ f(X(t+m), t) diff’able a.e.

=⇒ FOC well-defined, differentiation identity valid.

Thus B formula ⇐⇒ FOC. ↪→ back to slide 6
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Sketch proof of the housekeeping lemma
Housekeeping lemma. Under classical assump’ns,

oFOC ⇐⇒ classical FOC.

Sketch proof. Fix a decision rule X : [0, 1] → X .

Classical assump’ns & Vitali convergence theorem:

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0︸ ︷︷ ︸

= 0 for all r, t
iff oFOC holds

=
∫ t

r

d
dmf(X(s+m), s)

∣∣∣∣
m=0

ds︸ ︷︷ ︸
= 0 for all r, t

iff classical FOC holds.

.

■

↪→ back to slide 7
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Sketch proof of the necessity lemma

Necessity lemma. Any optimal decision rule X
satisfies the oFOC & has VX(t) := f(X(t), t) AC.

Sketch proof. X optimal & {f(x, ·)}x∈X AEC =⇒ VX AC.

Since X optimal, have for any s and m > 0 > m′ that

f(X(s+m), s) − f(X(s), s)
m

≤ 0 ≤ f(X(s+m′), s) − f(X(s), s)
m′ .

Integrating over (r, t) and letting m,m′ → 0,

both sides (in fact) converge to same limit:

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

≤ 0 ≤ d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

. ■

↪→ back to slide 7
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Sketch proof of the identity lemma I

For m > 0,

write

VX(t+m) − VX(t)
m

}
=: ϕm(t)

= f(X(t+m), t+m) − f(X(t+m), t)
m

}
=: ψm(t)

+ f(X(t+m), t) − f(X(t), t)
m

}
=: χm(t).

lim
m↓0

∫ t

r
χm = d

dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

if limit exists.

Must show: limit exists & equals

VX(t) − VX(r) −
∫ t

r
f2(X(s), s)ds.
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Sketch proof of the identity lemma II
VX(t+m) − VX(t)

m

}
=: ϕm(t)

=
f(X(t+m), t+m) − f(X(t+m), t)

m

}
=: ψm(t)

+
f(X(t+m), t) − f(X(t), t)

m

}
=: χm(t).

{ψm}m>0 need not converge a.e. (Even with strong assump’ns.)

But consider ψ⋆m(t) := f(X(t), t) − f(X(t), t−m)
m

.

{ψ⋆m}m>0 is UI & converges pointwise to t 7→ f2(X(t), t). And

∫ t

r
ψm =

∫ t+m

r+m
ψ⋆m =

∫ t

r
ψ⋆m +

(∫ t+m

t
ψ⋆m −

∫ r+m

r
ψ⋆m

)
=

∫ t

r
ψ⋆m + o(1) by UI.
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∫ t+m
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∫ t

r
ψ⋆m +

(∫ t+m

t
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∫ r+m

r
ψ⋆m
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r
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Sketch proof of the identity lemma III
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VX AC =⇒ {ϕm}m>0 UI & converges a.e. to V ′
X .

So

lim
m↓0

∫ t

r
χm = lim

m↓0

∫ t

r
[ϕm − ψm] = lim

m↓0

∫ t

r
[ϕm − ψ⋆m]

(Vitali) =
∫ t

r
lim
m↓0

[ϕm − ψ⋆m] =
∫ t

r

[
V ′
X(s) − f2(X(s), s)

]
ds

(FToC) = VX(t) − VX(r) −
∫ t

r
f2(X(s), s)ds.

↪→ back to slide 10
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Proof of the main theorem

Identity lemma. If VX is AC, then

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

︸ ︷︷ ︸
= 0 for all r, t

iff oFOC holds.

= VX(t) − VX(r) −
∫ t

r
f2(X(s), s)ds

︸ ︷︷ ︸
= 0 for all r, t

iff B formula holds.

.

Proof of main theorem. X satisfies the oFOC & VX is AC
=⇒ identity lemma applies. So oFOC =⇒ B formula.

X satisfies the B formula =⇒ VX is AC (by Lebesgue’s FToC)
=⇒ identity lemma applies. So B formula =⇒ oFOC. ■

↪→ back to slide 10

24



Proof of the main theorem

Identity lemma. If VX is AC, then

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0︸ ︷︷ ︸

= 0 for all r, t
iff oFOC holds.

= VX(t) − VX(r) −
∫ t

r
f2(X(s), s)ds

︸ ︷︷ ︸
= 0 for all r, t

iff B formula holds.

.

Proof of main theorem. X satisfies the oFOC & VX is AC
=⇒ identity lemma applies. So oFOC =⇒ B formula.

X satisfies the B formula =⇒ VX is AC (by Lebesgue’s FToC)
=⇒ identity lemma applies. So B formula =⇒ oFOC. ■

↪→ back to slide 10

24



Proof of the main theorem

Identity lemma. If VX is AC, then

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0︸ ︷︷ ︸

= 0 for all r, t
iff oFOC holds.

= VX(t) − VX(r) −
∫ t

r
f2(X(s), s)ds︸ ︷︷ ︸

= 0 for all r, t
iff B formula holds.

.

Proof of main theorem. X satisfies the oFOC & VX is AC
=⇒ identity lemma applies. So oFOC =⇒ B formula.

X satisfies the B formula =⇒ VX is AC (by Lebesgue’s FToC)
=⇒ identity lemma applies. So B formula =⇒ oFOC. ■

↪→ back to slide 10

24



Proof of the main theorem

Identity lemma. If VX is AC, then

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0︸ ︷︷ ︸

= 0 for all r, t
iff oFOC holds.

= VX(t) − VX(r) −
∫ t

r
f2(X(s), s)ds︸ ︷︷ ︸

= 0 for all r, t
iff B formula holds.

.

Proof of main theorem. X satisfies the oFOC & VX is AC
=⇒ identity lemma applies. So oFOC =⇒ B formula.

X satisfies the B formula =⇒ VX is AC (by Lebesgue’s FToC)
=⇒ identity lemma applies. So B formula =⇒ oFOC. ■

↪→ back to slide 10

24



Proof of the main theorem

Identity lemma. If VX is AC, then

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0︸ ︷︷ ︸

= 0 for all r, t
iff oFOC holds.

= VX(t) − VX(r) −
∫ t

r
f2(X(s), s)ds︸ ︷︷ ︸

= 0 for all r, t
iff B formula holds.

.

Proof of main theorem. X satisfies the oFOC & VX is AC
=⇒ identity lemma applies. So oFOC =⇒ B formula.

X satisfies the B formula =⇒ VX is AC (by Lebesgue’s FToC)
=⇒ identity lemma applies. So B formula =⇒ oFOC. ■

↪→ back to slide 10

24



Application: existing results

– Y ⊆ R
– classical assump’ns

{
Mirrlees (1976), Spence (1974),
Guesnerie and Laffont (1984)

– no classical assump’ns Nöldeke and Samuelson (2018)

– general Y
– quasi-linear f

{
Matthews and Moore (1987),
García (2005)

– general f this paper.

↪→ back to slide 12
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Application: outcome regularity
A set A partially ordered by ≲ is

(1) order-dense-in-itself iff for any a < a′ in A,
there is a b ∈ A such that a < b < a′,

(2) chain-separable iff for each chain C ⊆ A,
there is a countable set B ⊆ A that is order-dense in C,‡

(3) countably chain-complete iff every countable chain in A
with a lower (upper) bound in A
has an infimum (a supremum) in A.

(1) & (2): A ‘rich’. (3): A ‘not too large’.

Definition. Y is regular iff it satisfies properties (1)–(3).

↪→ back to slide 15

‡B ⊆ A is order-dense iff for any a < a′ in A, ∃ b ∈ B s.t. a ≲ b ≲ a′. 26



Application: preference regularity

Order topology on a set A partially ordered by ≲:
the topology generated by the open order rays

{b ∈ A : b < a} and {b ∈ A : a < b}.

Definition. f is regular iff

(a) type derivative f3 exists & is bounded & continuous in p

(b) for any chain C ⊆ Y , f jointly continuous on C × R × [0, 1]
when C has relative top’gy inherited from order top’gy on Y .

↪→ back to slide 15
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Application: single-crossing
Definition. For ϕ : [0, 1] → R, upper & lower derivatives

D⋆ϕ(t) := lim sup
m→0

ϕ(t+m) − ϕ(t)
m

D⋆ϕ(t) := lim inf
m→0

ϕ(t+m) − ϕ(t)
m

.

Partial upper/lower derivatives: (D⋆)i & (D⋆)i.

Definition. f is single-crossing iff
for any increasing Y : [0, 1] → Y & any P : [0, 1] → R,
mis-reporting payoff U(r, t) := f(Y (r), P (r), t) satisfies

(D⋆)1U(t, t) ≥ 0 implies (D⋆)1U(t, t′) > 0 for t′ > t

and (D⋆)1U(t, t) ≤ 0 implies (D⋆)1U(t, t′) < 0 for t′ < t.

↪→ back to slide 15
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