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Envelope theorem: optimal decision-making =⇒ B formula.

Textbook intuition: B formula ⇐⇒ FOC.

Modern envelope theorem of MS02:∗ almost no assumptions.

↪→ FOC ill-defined, so need different intuition.

My theorem: with almost no assumptions,
B formula equivalent to generalised FOC.

– an envelope theorem: FOC =⇒ B
– a converse: B =⇒ FOC.

Application to mechanism design.

∗Milgrom, P., & Segal, I. (2002). Envelope theorems for arbitrary choice
sets. Econometrica, 70(2), 583–601. doi:10.1111/1468-0262.00296
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Environment

Agent chooses action x from a set X
Objective f(x, t), where t ∈ [0, 1] is a parameter.

No assumptions on X , almost none on f :

(1) f(x, ·) is differentiable for each x ∈ X

(2) f(x, ·) is ‘not too erratic’. (definition: slide 12)

Decision rule: a map X : [0, 1]→ X .

Associated value function: VX(t) := f(X(t), t).
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Envelope theorem

X satisfies the B formula iff

VX(t) = VX(0) +
∫ t

0
f2(X(s), s)ds for every t ∈ [0, 1].

Equivalently: VX is absolutely continuous and

V ′X(t) = f2(X(t), t) for a.e. t ∈ (0, 1).

X is optimal iff for every t, X(t) maximises f(·, t).

Modern envelope theorem (MS02).
Any optimal decision rule satisfies theB formula.
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Textbook intuition

Differentiation identity:

V ′X(t) = d
dmf(X(t+m), t)

∣∣∣∣
m=0︸ ︷︷ ︸

‘indirect effect’

+ f2(X(t), t)︸ ︷︷ ︸
‘direct effect’

.

V ′X(t) = direct effect (B formula)
⇐⇒ indirect effect = 0 (FOC).

Problem: ‘indirect effect’ (hence FOC) ill-defined!

– f(·, t) & X need not be differentiable.

– actions X need have no convex or topological structure.
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The outer first-order condition

Disjuncture: in general, B formula 6⇐⇒ FOC.

– one solution: add strong ‘classical’ assumptions. (slide 13)

– my solution: find the correct FOC!

Decision rule X satisfies the outer FOC iff

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

= 0 for all r, t ∈ (0, 1).

‘Integrated’ version of classical FOC.

– always well-defined

– equiv’nt to classical FOC when latter well-defined. (slide 13)
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Theorem

Envelope theorem & converse.
For a decision rule X : [0, 1]→ X , the following are equivalent:

(1) X satisfies the oFOC

d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0

= 0 for all r, t ∈ (0, 1),

and VX(t) := f(X(t), t) is absolutely continuous.

(2) X satisfies theB formula

VX(t) = VX(0) +
∫ t

0
f2(X(s), s)ds for every t ∈ [0, 1].

(proof idea: slide 14)
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Mechanism design application: environment
Agent with preferences f(y, p, t) over
physical outcome y ∈ Y and payment p ∈ R.

– type t ∈ [0, 1] is agent’s private info

– assume single-crossing.

What’s new:

– outcome space Y is an abstract partially ordered set

– preferences not assumed quasi-linear in payment.

A physical allocation is Y : [0, 1]→ Y.

Y is implementable iff ∃ payment rule P : [0, 1]→ R
s.t. (Y, P ) is incentive-compatible.(

viz. f(Y (t), P (t), t) ≥ f(Y (r), P (r), t) for all r, t.
)
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Mechanism design application: theorem

Implementability theorem. Under regularity assumptions,
any increasing physical allocation is implementable.

Argument:

– fix an increasing physical allocation Y : [0, 1]→ Y

– choose a payment rule P so thatB holds

– then by converse envelope theorem, oFOC holds
⇐⇒ mechanism (Y, P ) is locally IC.

– finally, local IC =⇒ global IC by single-crossing.
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Mechanism design application: example

Monopolist selling information.

Physical allocations Y:
distributions of posterior beliefs, ordered by Blackwell.

By the implementability theorem, any information allocation
that gives higher types Blackwell-better signals
can be implemented.
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Thanks!

B
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Definition of ‘not too erratic’
A family {φx}x∈X of functions [0, 1]→ R is
absolutely equi-continuous (AEC) iff the family{

t 7→ sup
x∈X

∣∣∣∣φx(t+m)− φx(t)
m

∣∣∣∣
}

m>0

is uniformly integrable.

‘f(x, ·) not too erratic’ (slide 3)
means precisely that {f(x, ·)}x∈X is AEC.

– a sufficient condition (maintained by MS02):

– f(x, ·) absolutely continuous for each x ∈ X , and

– t 7→ supx∈X |f2(x, t)| dominated by an integrable f’n.

– a stronger sufficient condition: f2 bounded.

↪→ back to environment (slide 3)
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Classical assumptions

Classical assumptions:
– X is a convex subset of Rn

– action derivative f1 exists & is bounded
– only Lipschitz continuous decision rules X are considered.

(Bad for applications. Especially the Lipschitz restriction!)

Classical FOC: d
dmf(X(t+m), t)

∣∣∣∣
m=0

= 0 for a.e. t.

Classical envelope theorem and converse.
Under the classical assump’ns, classical FOC ⇐⇒ B formula.

Housekeeping lemma. under the classical assump’ns,
oFOC ⇐⇒ classical FOC.

↪→ back to oFOC (slide 6)
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Proof idea
Textbook intuition was based on differentiation identity:

V ′X(s) = d
dmf(X(s+m), s)

∣∣∣∣
m=0︸ ︷︷ ︸

‘indirect effect’

+ f2(X(s), s)︸ ︷︷ ︸
‘direct effect’

,

or (integrating)

VX(t)−VX(r) =
∫ t

r

d
dmf(X(s+m), s)

∣∣∣∣
m=0

ds+
∫ t

r
f2(X(s), s)ds.

I prove that the ‘outer’ version is always valid:

VX(t)−VX(r) = d
dm

∫ t

r
f(X(s+m), s)ds

∣∣∣∣
m=0︸ ︷︷ ︸

‘indirect effect’

+
∫ t

r
f2(X(s), s)ds︸ ︷︷ ︸
‘direct effect’

.

The rest is easy:
VX(t)− VX(r) = direct effect (B formula)

⇐⇒ indirect effect = 0 (oFOC).
↪→ back to theorem (slide 7) 14


