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Envelope theorem: optimal decision-making = B formula.
Textbook intuition: B formula <— FOC.

Modern envelope theorem of MS02:*  almost no assumptions.
— FOC ill-defined, so need different intuition.
My theorem: with almost no assumptions,
< formula equivalent to generalised FOC.
— an envelope theorem: FOC — X

— a converse: X — FOC.

Application to mechanism design.

*Milgrom, P., & Segal, I. (2002). Envelope theorems for arbitrary choice
sets. Econometrica, 70(2), 583-601. https://doi.org/10.1111/1468-0262.00296
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Setting

Agent chooses action x from a set X.
Objective f(x,t), where ¢t € [0,1] is a parameter.

No assumptions on X, almost none on f:
(1) f(z,-) differentiable for each z € X

(2) {f(z,-)}zex absolutely equi-continuous. (def'n: slide 17)
— a sufficient condition (maintained by MS02):
(a) f(x,-) absolutely continuous Vz € X, and

(b) t+— sup,cy

fa(x,t)| dominated by an integrable f'n.

— a stronger sufficient condition: fy bounded.
Decision rule: a map X :[0,1] — X.

Associated value function: Vx(t) := f(X(t),t).



Envelope theorem

X satisfies the B< formula iff
¢
Vx(t) = Vx(0) +/ f2(X(s),s)ds for every t € [0, 1].
0

Equivalently: Vx is absolutely continuous and

Vi(t) = fo(X(t),t) for ae. t € (0,1).

X is optimal iff for every ¢, X (t) maximises f(-,t).

Modern envelope theorem (MS02).f
Any optimal decision rule satisfies the B formula.

fReally a slight refinement of MS02.



Textbook intuition

Differentiation identity for Vx(t) :== f(X(¢),1):

Vi() = <X m). 0]+ R(X(0).0).

m=0

‘indirect effect’ ‘direct effect’
Indirect effect: t’s gain from mimicking ¢ + m (for small m).

indirect effect = 0 (FOC)
= Vi (t) = direct effect (B formula).

Problem: ‘indirect effect’ (hence FOC) ill-defined!
— f(-,t) & X need not be differentiable.

— actions X need have no convex or topological structure.



The outer first-order condition

Disjuncture: in general, X formula <& FOC.
— one solution: add strong ‘classical’ assumptions. (slide 18)

— my solution: find the correct FOC!

Decision rule X satisfies the outer FOC iff

¢
dd/f(X(s—Fm),s)ds =0 forallrte(0,1).
m Jy

m=0

Motivation: given decision rule X : [0,1] — X,
— type s can ‘mimic’ s +m by choosing X (s + m).

— oFOC: if types s € [r,t] do this,
it’s collectively unprofitable (to first order).



Housekeeping

Housekeeping lemma. Under classical assump’ns,
oFOC <= classical FOC.

(sketch proof: slide 19)

Necessity lemma. Any optimal decision rule X
satisfies oFOC & has Vx(t) == f(X(¢),t) absolutely continuous.

(sketch proof: slide 20)



Main theorem
Envelope theorem & converse.
For a decision rule X : [0,1] — X, the following are equivalent:

(1) X satisfies the oFOC

=0 forallr,te(0,1),

m=0

d?n/:f(X(s +m), s)ds

and Vx(t) .= f(X(t),t) is absolutely continuous.

(2) X satisfies the X formula

Vx(t) = Vx(0) + /Ot f2(X(s),s)ds for every t € [0,1].



Main theorem

Envelope theorem & converse. For X : [0,1] — X, TFAE:

(1) X satisfies the oFOC, & Vx(t) :== f(X(t),t) is AC.
(2) X satisfies the B formula.

=>: an envelope theorem.
Implies the MS02 envelope theorem.

<=: converse envelope theorem.



The key lemma

Textbook intuition relied on differentiation identity

+f2(X(S)> 8)7

m=0

V() = < F(X (s +m),s)

‘indirect effect’ ‘direct effect’

or (integrated & rearranged)
td
/,,, %f(X(S‘i‘m),S) ds = VX / f2

The ‘outer’ version is valid:

m=0

Identity lemma. If Vx is AC, then

dm/f (s+m),s )dsmO—VX —Vx(r /fg

(Where both sides are well-defined.) (sketch proof: slide 21)
24)

(proof of th’m: slide

10



Application: environment

Agent with preferences f(y,p,t) over
outcome y € Y and payment p € R.

— Y partially ordered
— type t € [0, 1] is agent’s private info

— assume single-crossing.

An allocationis Y : [0,1] — V.

Y is implementable iff 3 payment rule P: [0,1] - R
s.t. (Y, P) is incentive-compatible.

11



Application: goal

[4 E Y

Classical result: implementable <= increasing.
is the substantial part. Versions:
‘ literature this paper
outcomes )V | C R general
preferences f | quasi-linear general.

(lit: slide 25)
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Application: result

Implementability theorem. Under regularity assumptions,
any increasing allocation is implementable.

Argument:
— fix an increasing allocation Y : [0,1] — )
— choose a payment rule P so that B<X formula holds

— then by converse envelope theorem, oFOC holds
<= mechanism (Y, P) is locally IC.

finally, local IC = global IC by single-crossing.
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Application: example

Monopolist selling information.

Outcomes YV:

distributions of posterior beliefs, ordered by Blackwell.

By the implementability theorem,
any Blackwell-increasing information allocation
can be implemented.
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Application: details

Regular Y: ‘rich’ & ‘not too large’. (defn: slide 26)

Examples:
— R™ ordered by ‘coordinate-wise smaller’
— finite-expectation RVs ordered by ‘a.s. smaller’

— distributions of posteriors updated from a given prior
ordered by Blackwell.

Regular f: (def’n: slide 27)

(a) type derivative f3 exists, bounded, continuous in p.

(b) f jointly continuous (when ) has order topology).

Single-crossing f: (defn: slide 28)
if type t willing to pay to increase y € ), then so is type t' > t.
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Thanks!
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Absolute equi-continuity
A family {¢;}zex of functions [0,1] — R is AEC iff the family

G (t +m) — da(t)

m

{t — sup

’ is uniformly integrable.
TEX m>0

Name inspired by the following (Fitzpatrick & Hunt, 2015):

AC-UI lemma. A continuous ¢ : [0,1] — R is AC iff

firy St =00

m

} is uniformly integrable.
m>0

As name ‘AEC’ suggests, an AEC family

— is (uniformly) equi-continuous

— has AC functions as its members. < back to slide 3
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The classical approach

Classical assumptions:
— X is a convex subset of R"
— action derivative fi exists & is bounded

— only Lipschitz continuous decision rules X are considered.
(Bad for applications. Especially the Lipschitz restriction!)

— ‘mimicking payoff’ m — f(X(t+m),t) diff’able a.e.
—> FOC well-defined, differentiation identity valid.

Thus X formula <= FOC. < back to slide 6
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Sketch proof of the housekeeping lemma

Housekeeping lemma. Under classical assump’ns,
oFOC <= classical FOC.

Sketch proof. Fix a decision rule X : [0,1] — X.

Classical assump’ns & Vitali convergence theorem:

td
. / (X (s m),s)  ds.

m=0

. "X (s + m), s)ds

=0 for all r¢ =0 for all r,¢
iff oFOC holds iff classical FOC holds.

m=0

— back to slide 7



Sketch proof of the necessity lemma

Necessity lemma. Any optimal decision rule X
satisfies the oFOC & has Vx(t) = f(X(t),t) AC.

Sketch proof. X optimal & {f(z,-)}rex AEC = Vx AC.

Since X optimal, have for any s and m > 0 > m’ that
<0<

f(X(s+m)s) — f(X(s)s) ) f(X(s+m).s) = f(X(s).5)

Integrating over (r,t) and letting m, m’ — 0,

both sides (in fact) converge to same limit:

<0< (Sn/rtf(X(s+m),s)ds .l

m=0

d(:n/:f(X(s—Fm),s)ds

m=0

— back to slide 7
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Sketch proof of the identity lemma I

For m > 0, write Vx(t+m)— VX(t)} = P ()
()t m) — (X (t+ m)’t)} — (1)
N f(X(t+m)’2_f(X(t)’t)} =t Xm(t).

t

d t
li m = 5 X )
lim | x dm/r f(X(s+m),s)ds

if limit exists.
m=0

Must show: limit exists & equals

Vi () — Vi (r) — / " fa(X(s), 5)ds.
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Sketch proof of the identity lemma 11

Vetrm VO,
_ F(X(t+m),t+m) ff(X(ter),t)} )
. PO+ m = SO0

{tm }m>0 need not converge a.e. (Even with strong assump’ns.)

JX(0),0) = FX(0), ¢ = m)

m

But consider vy, (t) =

{5, tm>0 is UL & converges pointwise to t — fa(X(t),1).

[om= [ = Lo ([ v [ 0n)
:[wa+wn
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Sketch proof of the identity lemma III

M} = dm (1)
_ f(X(t+m),t+m)— f(X(Hm)’t)} =t Y (1)
. f(X(t-&-m)v:i_ f(X(t)’t)} = xm(t).

f: Ym = f: Yr, +0o(1), {¥%}tm>o0 Ul & converges pointwise to ¢t — fo(X(¢),t).

Vx AC = {¢m}m>0 Ul & converges a.e. to V{. So

t t t
}7115% ; Xm = };ﬂ% . [¢ wm} - 1:3[1) [(ﬁm - Wn]
t t
Vital) = [ %[qﬁm — ] = / [Vi(s) = L(X(5),9)]ds
(FToC)  =Vx(t / f2(X

— back to slide 10
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Proof of the main theorem

Identity lemma. If Vx is AC, then

d ot
%/T f(X(s+m),s)ds

m=0

= V() V() ~ [ £(X(s),5)d

=0 for all r,¢ =0 for all r ¢
iff oFOC holds. iff X formula holds.

Proof of main theorem. X satisfies the oFOC & Vx is AC
= identity lemma applies. So oFOC = X formula.

X satisfies the X formula = Vy is AC (by Lebesgue’s FToC)
— identity lemma applies. So B formula =— oFOC. N

— back to slide 10

S.
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Application: existing results

-YCR

— classical assump’ns {
— no classical assump’ns

— general Y
— quasi-linear f {

— general f

Mirrlees (1976), Spence (1974),
Guesnerie and Laffont (1984)

Néldeke and Samuelson (2018)

Matthews and Moore (1987),
Garcia (2005)

this paper.

— back to slide 12
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Application: outcome regularity

A set A partially ordered by < is

(1) order-dense-in-itself iff for any a < a’ in A,
there is a b € A such that a < b < d/,

(2) chain-separable iff for each chain C' C A,
there is a countable set B C A that is order-dense in C,}

(3) countably chain-complete iff every countable chain in .4
with a lower (upper) bound in .4
has an infimum (a supremum) in A.

(1) & (2): A ‘rich’ (3): A ‘not too large’.

Definition. ) is regular iff it satisfies properties (1)—(3).

— back to slide 15

iB C A is order-dense iff forany a <o’ in A, 3b€ B st. a <b<d 2



Application: preference regularity

Order topology on a set A partially ordered by <:
the topology generated by the open order rays

{beA:b<a} and {beA:a<b}.

Definition. f is regular iff
(a) type derivative f3 exists & is bounded & continuous in p

(b) for any chain C C ), f jointly continuous on C x R x [0, 1]
when C has relative top’gy inherited from order top’gy on V.

< back to slide 15
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Application: single-crossing
Definition. For ¢ :[0,1] - R, upper & lower derivatives
D*¢(t) := lim sup Pt +m) = ¢t)
m—0 m

ol +m) — o(t)

m

D,o(t) == llrrrlLl_l)I(}f

Partial upper/lower derivatives: (D*); & (Dy);.

Definition. f is single-crossing iff
for any increasing Y : [0,1] =Y & any P:[0,1] = R,
mis-reporting payoff U(r,t) .= f(Y(r), P(r),t) satisfies
(D*)1U(t,t) >0 implies (Dy)1U(t,t') >0 fort >t
and (D,)1U(t,t) <0 implies (D*)1U(t,t') <0 fort' <t.

— back to slide 15
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