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Ranking by committee

A committee must rank a set of alternatives.

Hiring:
– alternatives are candidates for a job
– uncertainty about who will accept
– hiring committee decides to whom to offer the job, to whom

next if the first candidate declined, etc.

Party lists:
– alternatives are a political party’s parliamentary candidates
– party’s leadership committee ranks them (‘party list’)
– the K highest-ranked candidates get parliamentary seats,
where K is (uncertain) # seats the party wins in an election
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Interaction

The majority will may contain (Condorcet) cycles:

Alexander

BenedictGregory

The committee’s chair chooses the order of pairwise votes.

Transitivity is imposed.
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Preferences

The chair has a preference � over alternatives.

Ranking R is more aligned with � than R′
iff whenever x � y and x R′ y, also x R y.

The chair prefers rankings that are more aligned with �.

Hiring: a more aligned ranking is exactly one that hires a
�-better candidate at every realisation of uncertainty.
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Unknown majority will

The chair does not know the majority will, W .
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Regret-free strategies

A ranking is W -unimprovable iff no other ranking is both
(i) reachable under W and
(ii) more aligned with �.

With perfect knowledge of W ,
W -unimprovability is the strongest optimality concept.

A regret-free strategy
reaches a W -unimprovable ranking under every W .
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Results

We introduce a strategy called insertion sort.

Theorem 1.
Insertion sort is regret-free.

What (other) strategies are regret-free?
Theorem 2: characterisation of outcomes.
Theorem 3: characterisation of behaviour.

What’s special about insertion sort?
Theorem 4: IS is characterised by a lexicographic property.
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Related literature

– agenda-manipulation: Black (1958), Farquharson (1969),
Miller (1977), Banks (1985)

. . . with incomplete info: Ordeshook and Palfrey (1988),
recent work by Benny Moldovanu & co-authors

– social choice: Zermelo (1929), Wei (1952), Kendall (1955)

– Copeland’s method: Copeland (1951), Rubinstein (1980)

– Kemeny–Slater method: Kemeny (1959), Slater (1961),
Young and Levenglick (1978), Young (1986, 1988)

– fair-bets method: Daniels (1969), Moon and Pullman
(1970), Slutzki and Volij (2005)

(references: slide 29)
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Example

α

βγ
and α � β � γ

Rankings reachable under W :
β R α R γ, α R′ γ R′ β and γ R′′ β R′′ α.

R and R′ are more aligned with � than R′′
and are incomparable to each other.

=⇒ R and R′ are W -unimprovable.
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Efficiency

A W -efficient ranking
is one that ranks x above y whenever both x � y and x W y.

Example.

α

βγ
and α � β � γ

W -efficient rankings: � itself, β R α R γ and α R′ γ R′ β.

Definition.
A strategy is efficient iff for any majority will W ,
its outcome under W is W -efficient.
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W -efficiency implies W -unimprovability

Lemma 1.
For any majority will W ,
a W -efficient ranking is W -unimprovable.

Corollary.
Any efficient strategy is regret-free.
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Proof of Lemma 1
Fix a W , a W -efficient R, and a W -reachable R′ 6= R.
Suppose toward a contradiction that R′ is MAW � than R.

Since R′ 6= R, ∃ alternatives x, y such that x R′ y and y R x.
Enumerate the alternatives that R′ ranks between x and y as

x = z1 R
′ z2 R

′ · · · R′ zN = y.

Since R′ is W -reachable, we must have z1 W z2 W · · ·W zN .

There has to be n < N at which zn+1 R zn,
else we’d have x R y by transitivity of R.

It must be that zn+1 � zn,
else we’d have zn R zn+1 by zn W zn+1 and W -efficiency of R.

So (zn, zn+1) is ranked ‘right’ by R and ‘wrong’ by R′
. . . which is absurd since R′ is MAW � than R. �
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Insertion sort

Label the alternatives {1, . . . , n} so that 1 � · · · � n.

Insertion sort strategy: for each k ∈ {n− 1, . . . , 1},

– totally rank {k + 1, . . . , n}

(write xk+1 R · · · R xn, where {xk+1, . . . , xn} ≡ {k+ 1, . . . , n})

– ‘insert’ k into {k + 1, . . . , n}:

pit k against the highest-ranked (xk+1);
then (if k lost) pit k against the 2nd-highest-ranked (xk+2);
. . .
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offer β vs γ

β R γ
↪→ offer α vs β

γ R β
↪→ offer α vs γ

α R β R γ
β R α & β R γ
↪→ offer α vs γ α R γ R β

γ R α & γ R β
↪→ offer α vs β

β R α R γ β R γ R α γ R α R β γ R β R α

β W γ γ W β

α W β β W α α W γ γ W α

α W γ γ W α α W β β W α

α � β � γ
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Insertion sort is regret-free

Theorem 1.
The insertion-sort strategy is efficient, hence regret-free.
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Proof of Theorem 1

Fix a W , and let R be the outcome of IS under W .
Fix x, y with x � y and x W y; we must show that x R y.

Enumerate all alternatives �-worse than x as z1 R · · · R zK .
Note that zk = y for some k ≤ K.

By definition of IS,
x is pitted against z1, z2, . . . in turn until it wins a vote.

– if x loses against z1, . . . , zk−1,
then it is pitted against zk = y and wins (since x W y)
=⇒ x R y.

– if x wins against z` for ` < k,
then x R z` R · · · R zk = y
=⇒ x R y (by transitivity of R). �
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What (other) strategies are regret-free?

We’ve shown that regret-free strategies exist.

What are their characteristics?

17



Characterisation of outcomes

Recall that W -efficiency =⇒ W -unimprovability (Lemma 1).

The converse is false:
a W -unimprovable ranking need not be W -efficient.

(counter-example: slide 24)

But only efficiency ensures unimprovability robustly across W s:

Theorem 2.
A strategy is regret-free iff it is efficient.

(tightness: slide 25)
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offer β vs γ

β R γ
↪→ offer α vs β

γ R β
↪→ offer α vs γ

α R β R γ
β R α & β R γ
↪→ offer α vs γ α R γ R β

γ R α & γ R β
↪→ offer α vs β

β R α R γ β R γ R α γ R α R β γ R β R α

β W γ γ W β

α W β β W α α W γ γ W α

α W γ γ W α α W β β W α

α � β � γ
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Characterisation of behaviour

Theorem 3.
A strategy is regret-free iff
it never misses an opportunity or takes a risk.

(formal definitions: slide 26) (tightness: slide 27)

(jump to end)
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History-invariant voting

We have assumed throughout that W is fixed
⇐⇒ voting is (approximately) history-invariant.

Reasonable if voters are unsophisticated or vote expressively.

Not unreasonable if voting is strategic. (details: slide 28)
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What’s special about insertion sort?

For an alternative x, strategy σ and majority will W ,
write Rσ(W ) for the outcome of σ under W , and

Nσ
x (W ) := |{y : x � y and x Rσ(W ) y}|.

Definition.
Given an alternative x, σ is better for x than σ′ iff
|{W : Nσ

x (W ) ≥ k}| ≥ |{W : Nσ′
x (W ) ≥ k}| ∀k ∈ {1, . . . , n−1}.

If σ ∈ Σ is better for x than each ∈ Σ, it is best for x among Σ.

Label the alternatives {1, . . . , n} so that 1 � · · · � n.

Theorem 4.
A strategy is outcome-equivalent to insertion sort iff
among all strategies, it is best for 1;
among such strategies, it is best for 2; and so on.
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Counter-example to the converse of Lemma 1
Alternatives {α, β, γ, δ} with α � β � γ � δ and

α

β

γ

δ

The ranking α R δ R γ R β. . .
(– is reachable under W : offer {α, δ}, {δ, γ}, {γ, β}.)
– is W -unimprovable,
since no other W -reachable ranking ranks α above β.
(Because there’s only one directed path in W from α to β.)

– is not W -efficient, since δ R β.

(back to slide 18)
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Theorem 2 tightness

The characterisation in Therem 2 is tight in the following sense:

Proposition 1.
For any W and W -reachable W -efficient ranking R,
some regret-free strategy has outcome R under W .

Thus for every majority will W ,

{R : ∃ regret-free strategy with outcome R under W}
= {R : R is W -reachable and W -efficient}

(⊆ by Theorem 2, ⊇ by Proposition 1)

(back to slide 18)
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Formal definition of errors

A proto-ranking is an incomplete ranking: formally,
an irreflexive and transitive relation on the set of alternatives.

Definition.
Let R be a non-total proto-ranking, and let x � y be unranked.
(1) Offering {x, y} for a vote misses an opportunity (at R) iff

there is an alternative z s.t. x � z � y and y 6R z 6R x.

(2) Offering {x, y} for a vote takes a risk (at R) iff
there is an alternative z s.t. either

– z � y, x R z and y 6R z, or
– x � z, z R y and z 6R x.

(back to slide 20)
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Theorem 3 tightness

Proposition 2.
After any error-free history,
there is a pair that can be offered without committing an error.

Yields tightness:
for any W and any sequence of pairs that is error-free under W ,
some regret-free strategy offers this sequence under W .

(back to slide 20)
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Strategic voting
Each voter i has a preference �i over alternatives,
and prefers rankings more aligned with �i.

A voter’s strategy specifies how to vote at each history.
The sincere strategy: vote for your favourite. History-invariant!

Outcome of chair [voters] using σ [σi, σ−i] denoted R(σ, σi, σ−i).

Definition.
A strategy σi is dominant iff for any alternative strategy σ′i,
(@) there exists no profile σ, σ−i such that R(σ′, σi, σ−i) is distinct

from, and MAW �i than, R(σ, σi, σ−i).
(∃) there exists a profile σ, σ−i such that R(σ, σi, σ−i) is dis-

tinct from, and MAW �i than, R(σ′, σi, σ−i).

Proposition 4.
The sincere strategy is (uniquely) dominant.

(back to slide 21) 28
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