AGENDA-MANIPULATION IN RANKING

Gregorio Curello
University of Bonn

Ludvig Sinander
Northwestern University

14 December 2020
paper: arXiv.org/abs/2001.11341

Ranking by committee

A committee must rank a set of alternatives.
Hiring:

- alternatives are candidates for a job
- uncertainty about who will accept
- hiring committee decides to whom to offer the job, to whom next if the first candidate declined, etc.

Party lists:

- alternatives are a political party's parliamentary candidates
- party's leadership committee ranks them ('party list')
- the K highest-ranked candidates get parliamentary seats, where K is (uncertain) \# seats the party wins in an election

Interaction

The majority will may contain (Condorcet) cycles:

The committee's chair chooses the order of pairwise votes.

Transitivity is imposed.

Preferences

The chair has a preference \succ over alternatives.
Ranking R is more aligned with \succ than R^{\prime}
iff whenever $x \succ y$ and $x R^{\prime} y$, also $x R y$.
The chair prefers rankings that are more aligned with \succ.
Hiring: a more aligned ranking is exactly one that hires a \succ-better candidate at every realisation of uncertainty.

Unknown majority will

The chair does not know the majority will, W.

Regret-free strategies

A ranking is W-unimprovable iff no other ranking is both
(i) reachable under W and
(ii) more aligned with \succ.

With perfect knowledge of W,
W-unimprovability is the strongest optimality concept.
A regret-free strategy
reaches a W-unimprovable ranking under every W.

Results

We introduce a strategy called insertion sort.

Theorem 1.
Insertion sort is regret-free.

What (other) strategies are regret-free?
Theorem 2: characterisation of outcomes.
Theorem 3: characterisation of behaviour.
What's special about insertion sort?
Theorem 4: IS is characterised by a lexicographic property.

Related literature

- agenda-manipulation: Black (1958), Farquharson (1969), Miller (1977), Banks (1985)
... with incomplete info: Ordeshook and Palfrey (1988), recent work by Benny Moldovanu \& co-authors
- social choice: Zermelo (1929), Wei (1952), Kendall (1955)
- Copeland's method: Copeland (1951), Rubinstein (1980)
- Kemeny-Slater method: Kemeny (1959), Slater (1961), Young and Levenglick (1978), Young $(1986,1988)$
- fair-bets method: Daniels (1969), Moon and Pullman (1970), Slutzki and Volij (2005)

Example

Rankings reachable under W :
$\beta R \alpha R \gamma, \quad \alpha R^{\prime} \gamma R^{\prime} \beta$ and $\gamma R^{\prime \prime} \beta R^{\prime \prime} \alpha$.
R and R^{\prime} are more aligned with \succ than $R^{\prime \prime}$ and are incomparable to each other.
$\Longrightarrow R$ and R^{\prime} are W-unimprovable.

Efficiency

A W-efficient ranking
is one that ranks x above y whenever both $x \succ y$ and $x W y$.

Example.

W-efficient rankings: \succ itself, $\beta R \alpha R \gamma$ and $\alpha R^{\prime} \gamma R^{\prime} \beta$.

Definition.
A strategy is efficient iff for any majority will W, its outcome under W is W-efficient.

W-efficiency implies W-unimprovability

Lemma 1.
For any majority will W, a W-efficient ranking is W-unimprovable.

Corollary.
Any efficient strategy is regret-free.

Proof of Lemma 1

Fix a W, \quad a W-efficient R, \quad and a W-reachable $R^{\prime} \neq R$. Suppose toward a contradiction that R^{\prime} is MAW \succ than R.

Since $R^{\prime} \neq R, \exists$ alternatives x, y such that $x R^{\prime} y$ and $y R x$. Enumerate the alternatives that R^{\prime} ranks between x and y as

$$
x=z_{1} R^{\prime} z_{2} R^{\prime} \cdots R^{\prime} z_{N}=y
$$

Since R^{\prime} is W-reachable, we must have $z_{1} W z_{2} W \cdots W z_{N}$.

There has to be $n<N$ at which $z_{n+1} R z_{n}$, else we'd have $x R y$ by transitivity of R.

It must be that $z_{n+1} \succ z_{n}$, else we'd have $z_{n} R z_{n+1}$ by $z_{n} W z_{n+1}$ and W-efficiency of R.

So (z_{n}, z_{n+1}) is ranked 'right' by R and 'wrong' by R^{\prime}
\ldots which is absurd since R^{\prime} is MAW \succ than R.

Insertion sort

Label the alternatives $\{1, \ldots, n\}$ so that $1 \succ \cdots \succ n$.
Insertion sort strategy: for each $k \in\{n-1, \ldots, 1\}$,

- totally rank $\{k+1, \ldots, n\}$
(write $x_{k+1} R \cdots R x_{n}$, where $\left\{x_{k+1}, \ldots, x_{n}\right\} \equiv\{k+1, \ldots, n\}$)
- 'insert' k into $\{k+1, \ldots, n\}$:
pit k against the highest-ranked $\left(x_{k+1}\right)$;
then (if k lost) pit k against the $2^{\text {nd }}$-highest-ranked $\left(x_{k+2}\right)$;

Insertion sort is regret-free

Theorem 1.

The insertion-sort strategy is efficient, hence regret-free.

Proof of Theorem 1

Fix a W, and let R be the outcome of IS under W.
Fix x, y with $x \succ y$ and $x W y$; we must show that $x R y$.
Enumerate all alternatives \succ-worse than x as $\quad z_{1} R \cdots R z_{K}$. Note that $z_{k}=y$ for some $k \leq K$.

By definition of IS,
x is pitted against z_{1}, z_{2}, \ldots in turn until it wins a vote.

- if x loses against z_{1}, \ldots, z_{k-1}, then it is pitted against $z_{k}=y$ and wins (since $x W y$) $\Longrightarrow x R y$.
- if x wins against z_{ℓ} for $\ell<k$, then $x R z_{\ell} R \cdots R z_{k}=y$
$\Longrightarrow x R y$ (by transitivity of R).

What (other) strategies are regret-free?

We've shown that regret-free strategies exist.
What are their characteristics?

Characterisation of outcomes

Recall that W-efficiency $\Longrightarrow W$-unimprovability (Lemma 1).

The converse is false:
a W-unimprovable ranking need not be W-efficient.
(counter-example: slide 24)
But only efficiency ensures unimprovability robustly across W s: Theorem 2.
A strategy is regret-free iff it is efficient.
(tightness: slide 25)

Characterisation of behaviour

Theorem 3.

A strategy is regret-free iff
it never misses an opportunity or takes a risk.
(formal definitions: slide 26) (tightness: slide 27)

History-invariant voting

We have assumed throughout that W is fixed
\Longleftrightarrow voting is (approximately) history-invariant.

Reasonable if voters are unsophisticated or vote expressively.
Not unreasonable if voting is strategic.
(details: slide 28)

What's special about insertion sort?

For an alternative x, strategy σ and majority will W, write $R^{\sigma}(W)$ for the outcome of σ under W, and

$$
N_{x}^{\sigma}(W):=\mid\left\{y: x \succ y \text { and } x R^{\sigma}(W) y\right\} \mid .
$$

Definition.

Given an alternative x, σ is better for x than σ^{\prime} iff
$\left|\left\{W: N_{x}^{\sigma}(W) \geq k\right\}\right| \geq\left|\left\{W: N_{x}^{\sigma^{\prime}}(W) \geq k\right\}\right| \quad \forall k \in\{1, \ldots, n-1\}$.
If $\sigma \in \Sigma$ is better for x than each $\in \Sigma$, it is best for x among Σ.

Label the alternatives $\{1, \ldots, n\}$ so that $1 \succ \cdots \succ n$.

Theorem 4.

A strategy is outcome-equivalent to insertion sort iff among all strategies, it is best for 1 ; among such strategies, it is best for 2 ; and so on.

Counter-example to the converse of Lemma 1

Alternatives $\{\alpha, \beta, \gamma, \delta\}$ with $\alpha \succ \beta \succ \gamma \succ \delta$ and

The ranking $\alpha R \delta R \gamma R \beta$...
(- is reachable under W : offer $\{\alpha, \delta\},\{\delta, \gamma\},\{\gamma, \beta\}$.)

- is W-unimprovable, since no other W-reachable ranking ranks α above β. (Because there's only one directed path in W from α to β.)
- is not W-efficient, since $\delta R \beta$.

Theorem 2 tightness

The characterisation in Therem 2 is tight in the following sense:

Proposition 1.

For any W and W-reachable W-efficient ranking R, some regret-free strategy has outcome R under W.

Thus for every majority will W,
$\{R: \exists$ regret-free strategy with outcome R under $W\}$
$=\{R: R$ is W-reachable and W-efficient $\}$
(\subseteq by Theorem $2, \supseteq$ by Proposition 1)

Formal definition of errors

A proto-ranking is an incomplete ranking: formally, an irreflexive and transitive relation on the set of alternatives.

Definition.

Let R be a non-total proto-ranking, and let $x \succ y$ be unranked.
(1) Offering $\{x, y\}$ for a vote misses an opportunity (at R) iff there is an alternative z s.t. $x \succ z \succ y$ and $y \not R z \not R x$.
(2) Offering $\{x, y\}$ for a vote takes a risk (at R) iff there is an alternative z s.t. either
$-z \succ y, x R z$ and $y \not R z$, or
$-x \succ z, z R y$ and $z R x$.

Theorem 3 tightness

Proposition 2.

After any error-free history,
there is a pair that can be offered without committing an error.

Yields tightness:
for any W and any sequence of pairs that is error-free under W, some regret-free strategy offers this sequence under W.
(back to slide 20)

Strategic voting

Each voter i has a preference \succ_{i} over alternatives, and prefers rankings more aligned with \succ_{i}.

A voter's strategy specifies how to vote at each history. The sincere strategy: vote for your favourite. History-invariant!

Outcome of chair [voters] using $\sigma\left[\sigma_{i}, \sigma_{-i}\right]$ denoted $R\left(\sigma, \sigma_{i}, \sigma_{-i}\right)$.

Definition.

A strategy σ_{i} is dominant iff for any alternative strategy σ_{i}^{\prime},
(\ddagger) there exists no profile σ, σ_{-i} such that $R\left(\sigma^{\prime}, \sigma_{i}, \sigma_{-i}\right)$ is distinct from, and MAW \succ_{i} than, $R\left(\sigma, \sigma_{i}, \sigma_{-i}\right)$.
(\exists) there exists a profile σ, σ_{-i} such that $R\left(\sigma, \sigma_{i}, \sigma_{-i}\right)$ is distinct from, and MAW \succ_{i} than, $R\left(\sigma^{\prime}, \sigma_{i}, \sigma_{-i}\right)$.

Proposition 4.

The sincere strategy is (uniquely) dominant.

References I

Banks, J. S. (1985). Sophisticated voting outcomes and agenda control. Social Choice and Welfare, 1(4), 295-306. doi:10.1007/BF00649265
Black, D. (1958). The theory of committees and elections. Cambridge: Cambridge University Press.
Copeland, A. (1951). A reasonable social welfare function. Notes from University of Michigan seminar on applications of mathematics to the social sciences.
Daniels, H. E. (1969). Round-robin tournament scores. Biometrika, 56(2), 295-299. doi:10.2307/2334422
Farquharson, R. (1969). Theory of voting. New Haven, CT: Yale University Press.
Gershkov, A., Kleiner, A., Moldovanu, B., \& Shi, X. (2019). The art of compromising: Voting with interdependent values and the flag of the Weimar Republic. Working paper, 9 Sep 2019.

References II

Gershkov, A., Moldovanu, B., \& Shi, X. (2017). Optimal voting rules. Review of Economic Studies, 84(2), 688-717. doi:10.1093/restud/rdw044
Gershkov, A., Moldovanu, B., \& Shi, X. (2019a). Monotonic norms and orthogonal issues in multidimensional voting. Working paper, 6 Sep 2019.
Gershkov, A., Moldovanu, B., \& Shi, X. (2019b). Voting on multiple issues: What to put on the ballot? Theoretical Economics, 14(2), 555-596. doi:10.3982/TE3193
Kemeny, J. G. (1959). Mathematics without numbers. Daedalus, 88(4), 577-591. JSTOR: 20026529
Kendall, M. G. (1955). Further contributions to the theory of paired comparisons. Biometrics, 11(1), 43-62. doi:10.2307/3001479

References III

Kleiner, A., \& Moldovanu, B. (2017). Content-based agendas and qualified majorities in sequential voting. American Economic Review, 107(6), 1477-1506. doi:10.1257/aer. 20160277
Miller, N. R. (1977). Graph-theoretical approaches to the theory of voting. American Journal of Political Science, 21(4), 769-803. doi:10.2307/2110736
Moon, J. W., \& Pullman, N. J. (1970). On generalized tournament matrices. SIAM Review, 12(3), 384-399. doi:10.1137/1012081
Ordeshook, P. C., \& Palfrey, T. R. (1988). Agendas, strategic voting, and signaling with incomplete information. American Journal of Political Science, 32(2), 441-466. doi:10.2307/2111131

References IV

Rubinstein, A. (1980). Ranking the participants in a tournament. SIAM Journal on Applied Mathematics, 38(1), 108-111. doi:10.1137/0138009
Schedel, H. (1493). Register Des buchs der Croniken und geschichten mit figure und pildnussen von anbegin der welt bis auf dise unsere Zeit. (M. Wolgemut \& W. Pleydenwurff, Illustrators \& G. Alt, Trans.). Nürnberg: Anton Koberger.
Slater, P. (1961). Inconsistencies in a schedule of paired comparisons. Biometrika, 48(3-4), 303-312. doi:10.1093/biomet/48.3-4.303
Slutzki, G., \& Volij, O. (2005). Ranking participants in generalized tournaments. International Journal of Game Theory, 33(2), 255-270. doi:10.1007/s00182-005-0197-5
Wei, T.-H. (1952). Algebraic foundations of ranking theory. (doctoral thesis, University of Cambridge).

References V

Young, H. P. (1986). Optimal ranking and choice from pairwise comparisons. In B. Grofman \& G. Owen (Eds.), Information pooling and group decision making (pp. 113-122). Greenwich, CT: JAI Press.
Young, H. P. (1988). Condorcet's theory of voting. American
Political Science Review, 82(4), 1231-1244.
doi:10.2307/1961757
Young, H. P., \& Levenglick, A. (1978). A consistent extension of Condorcet's election principle. SIAM Journal on Applied Mathematics, 35(2), 285-300. doi:10.1137/0135023
Zermelo, E. (1929). Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 29(1), 436-460. doi:10.1007/BF01180541

