Agenda-manipulation in Ranking

Gregorio Curello
University of Bonn

Ludvig Sinander
University of Oxford

3 December 2021
paper: arXiv.org/abs/2001.11341

Ranking by committee

Many organisations governed by committee. Typically

- committee sets priorities
- day-to-day decisions delegated to executives.

Simple example: hiring.

- uncertainty about which candidates would accept offer
- hiring committee ranks the candidates
- delegates task of extending offers (to $1^{\text {st }} ;$ to $2^{\text {nd }} ; ~$ etc.)

For lack of info, committee doesn't pick an alternative; instead ranks the alternatives.

Agenda-setting

Majority will may contain (Condorcet) cycles:

Committee's chair chooses order of pairwise votes.

Transitivity imposed.

Uncertainty

Chair does not know the majority will, W.

Regret-free strategies

Question: how much influence can chair exert? \& how?

Answer: \exists regret-free strategy:
reaches a ranking 'as good as' the full-info optimum, whatever the majority will.

Seek to understand RF qualitatively:

- what do RF strategies have in common?
- what distinguishes them from each other?

Related literature

agenda-manipulation:
Farquharson (1969), Black (1958), Miller (1977), Banks (1985)
\hookrightarrow incomplete info:
Ordeshook and Palfrey (1988), recently Moldovanu \& co-authors
social choice: Zermelo (1929), Wei (1952), Kendall (1955)
\hookrightarrow Copeland: Copeland (1951), Rubinstein (1980)
Kemeny (1959), Slater (1961),
\hookrightarrow Kemeny-Slater: Young and Levenglick (1978), Young (1986, 1988)
\hookrightarrow fair-bets:
Daniels (1969), Moon and Pullman (1970), Slutzki and Volij (2005)

Plan

Preliminaries

Do RF strategies exist?

What do RF strategies have in common?

How do RF strategies differ?

Preferences

Chair has preference \succ over alternatives.
Ranking R is more aligned with \succ than R^{\prime}
iff whenever $x \succ y$ and $x R^{\prime} y$, also $x R y$.
Chair prefers more aligned rankings ... and that's all.

Hiring: more aligned
hires \succ-better candidate at every realisation of uncertainty.

Example

W-reachable rankings:
$\beta R \alpha R \gamma, \quad \alpha R^{\prime} \gamma R^{\prime} \beta$ and $\gamma R^{\prime \prime} \beta R^{\prime \prime} \alpha$.
R and R^{\prime} are more aligned with \succ than $R^{\prime \prime}$ and are incomparable to each other.
$\Longrightarrow R$ and R^{\prime} cannot be W-feasibly improved upon.

Regret-free strategies

A ranking is W-unimprovable iff no other ranking is both
(i) reachable under W and
(ii) more aligned with \succ.

With perfect knowledge of W,
W-unimprovability is the strongest optimality concept.
A regret-free strategy
reaches a W-unimprovable ranking under every W.

Efficiency

A W-efficient ranking
is one that ranks x above y whenever both $x \succ y$ and $x W y$.

Example:

W-efficient rankings: \succ itself, $\beta R \alpha R \gamma$ and $\alpha R^{\prime} \gamma R^{\prime} \beta$.

Definition.

A strategy is efficient iff under any majority will W,
it reaches a W-efficient ranking.

W-efficiency implies W-unimprovability

Lemma 1.
For any majority will W, a W-efficient ranking is W-unimprovable.

Corollary.
Any efficient strategy is regret-free.

Intuition for Lemma 1

Given W, call a pair $x \succ y \begin{cases}\text { an agreement pair } & \text { if } x W y \\ \text { a disagreement pair } & \text { if } y W x .\end{cases}$
Efficiency: rank every agreement pair 'right'.
Disagreement pairs can be ranked 'right' only via transitivity.

Example:

W-efficient $\beta R \alpha R \gamma$: $\begin{cases}\alpha, \beta & \text { voted on } \Longrightarrow \text { ranked 'wrong' } \\ \beta, \gamma & \text { not voted on; ranked 'right'. }\end{cases}$
To improve, must refrain from vote on α, β
\Longrightarrow vote on $\beta, \gamma \Longrightarrow$ rank this pair 'wrong'.

Proof of Lemma 1

Fix $W, \quad W$-efficient R, \quad and W-reachable $R^{\prime} \neq R$.
We'll show that R^{\prime} is not MAW \succ than R.

Since $R^{\prime} \neq R, \exists$ alternatives x, y such that $x R^{\prime} y$ and $y R x$. Enumerate alternatives that R^{\prime} ranks between x and y as

$$
x=z_{1} R^{\prime} z_{2} R^{\prime} \cdots R^{\prime} z_{N}=y
$$

Since R^{\prime} is W-reachable, must have $z_{1} W z_{2} W \cdots W z_{N}$.

There has to be $n<N$ at which $z_{n+1} R z_{n}$, else we'd have $x R y$ by transitivity of R.

It must be that $z_{n+1} \succ z_{n}$, else we'd have $z_{n} R z_{n+1}$ by $z_{n} W z_{n+1}$ and W-efficiency of R.

So (z_{n}, z_{n+1}) is ranked 'right' by R and 'wrong' by R^{\prime} $\Longrightarrow R^{\prime}$ is not MAW \succ than R.

Plan

Preliminaries

Do RF strategies exist?

What do RF strategies have in common?

How do RF strategies differ?

Insertion sort

Label the alternatives $\mathcal{X} \equiv\{1, \ldots, n\}$ so that $1 \succ \cdots \succ n$.
Insertion sort strategy: for each $k \in\{n-1, \ldots, 1\}$,

- totally rank $\{k+1, \ldots, n\}$
(write $x_{k+1} R \cdots R x_{n}$, where $\left\{x_{k+1}, \ldots, x_{n}\right\} \equiv\{k+1, \ldots, n\}$)
- 'insert' k into $\{k+1, \ldots, n\}$:
pit k against the highest-ranked $\left(x_{k+1}\right)$;
then (if k lost) pit k against the $2^{\text {nd }}$-highest-ranked $\left(x_{k+2}\right)$;

Insertion sort is regret-free

Theorem 1.

The insertion-sort strategy is efficient, hence regret-free.

Proof of Theorem 1

Fix W; let R be ranking reached by IS under W.
Fix x, y with $x \succ y$ and $x W y ; \quad$ must show that $x R y$.
Enumerate all alternatives \succ-worse than x as $\quad z_{1} R \cdots R z_{K}$. Note that $z_{k}=y$ for some $k \leq K$.

By definition of IS,
x is pitted against z_{1}, z_{2}, \ldots in turn until it wins a vote.

- if x loses against z_{1}, \ldots, z_{k-1}, then it is pitted against $z_{k}=y$ and wins (since $x W y$) $\Longrightarrow x R y$.
- if x wins against z_{ℓ} for $\ell<k$, then $x R z_{\ell} R \cdots R z_{k}=y$
$\Longrightarrow x R y$ (by transitivity of R).

Plan

Preliminaries

Do RF strategies exist?

What do RF strategies have in common?

How do RF strategies differ?

What (other) strategies are regret-free?

We've shown that RF strategies exist.

What do RF strategies have in common?
$\Longleftrightarrow \quad$ qualitatively, what does RF -ness require?

Characterisation of outcomes

Recall that W-efficiency $\Longrightarrow W$-unimprovability (Lemma 1).
The converse is false:
a W-unimprovable ranking need not be W-efficient.
(counter-example: slide 38)

But only efficiency ensures unimprovability robustly across W s:
Theorem 2.
A strategy is regret-free iff it is efficient.
(tightness: slide 40)

Characterisation of behaviour

Theorem 3.
A strategy is regret-free iff
it never misses an opportunity or takes a risk.
(formal definitions: slide 41) (tightness: slide 42)

Proof of Theorems $2 \& 3$

(details: slide 43)

Plan

Preliminaries
 Do RF strategies exist?
 What do RF strategies have in common?

How do RF strategies differ?

Reverse insertion sort

Label the alternatives $\mathcal{X} \equiv\{1, \ldots, n\}$ so that $1 \succ \cdots \succ n$.
Reverse insertion sort strategy: for each $k \in\{2, \ldots, n\}$,

- totally rank $\{1, \ldots, k-1\}$
(write $x_{1} R \cdots R x_{k-1}$, where $\left\{x_{1}, \ldots, x_{k-1}\right\} \equiv\{1, \ldots, k-1\}$)
- 'insert' k into $\{1, \ldots, k-1\}$:
pit k against the lowest-ranked $\left(x_{k-1}\right)$;
then (if k won) pit k against the $2^{\text {nd }}$-lowest-ranked $\left(x_{k-2}\right)$;

Reverse IS is efficient
(by Theorem-1 argument)
\Longrightarrow regret-free.
(by Lemma 1)

IS vs. reverse IS

Example:

W-reachable, $\quad W$-efficient rankings:
$\beta R \alpha R \gamma \quad$ and $\quad \alpha R^{\prime} \gamma R^{\prime} \beta$.
Reverse insertion sort reaches R. Insertion sort reaches R^{\prime}.
Prioritisation: 'right' ranking of $\begin{cases}\beta, \gamma & \text { for reverse IS } \\ \alpha, \beta & \text { for IS. }\end{cases}$

Prioritisation

Every RF strategy ranks agreement pairs 'right'.
(Theorem 2)

$$
(x \succ y \& x W y)
$$

Disagreement pairs:

- some ranked by vote \Longrightarrow bad.
- others by impositions of transitivity
\hookrightarrow favourable ones!
(Theorem 3)
\Longrightarrow good.
- trade-off: to rank one pair by transitivity, must offer votes on others.
\Longrightarrow RF strategies differ in which favourable impositions of transitivity they exploit.

How does IS prioritise?

Label the alternatives $\mathcal{X} \equiv\{1, \ldots, n\}$ so that $1 \succ \cdots \succ n$.
IS leaves 1 for last: ranks $\{2, \ldots, n\}$, then 'inserts' 1 .
\hookrightarrow maximises favourable impositions of transitivity involving 1 .

Subject to that, IS leaves 2 for last. Subject to that, IS leaves 3 for last. etc.

Suggests lexicographic prioritisation: among all strategies, IS optimises position of 1 ; among such strategies, it optimises position of 2 ; etc.

Lexicographic prioritisation

For alternative x, strategy σ and majority will W, write $R^{\sigma}(W)$ for ranking reached under σ and W, and

$$
N_{x}^{\sigma}(W):=\mid\left\{y \in \mathcal{X}: x \succ y \text { and } x R^{\sigma}(W) y\right\} \mid .
$$

Definition.

Given $x \in \mathcal{X}, \sigma$ is better for x than σ^{\prime} iff
$\left|\left\{W: N_{x}^{\sigma}(W) \geq k\right\}\right| \geq\left|\left\{W: N_{x}^{\sigma^{\prime}}(W) \geq k\right\}\right| \quad \forall k \in\{1, \ldots, n-1\}$.
If $\sigma \in \Sigma$ is better for x than each $\in \Sigma$, it is best for x among Σ.
Theorem 4.
A strategy is outcome-equivalent to insertion sort iff among all strategies, it is best for 1 ; among such strategies, it is best for 2 ; and so on.

Interaction

Write R_{t} for what has been decided by the end of period t. (A proto-ranking: an irreflexive, \& transitive relation on \mathcal{X}.)

Initially, nothing is decided: $R_{0}=\varnothing$.
In each period t, unless R_{t-1} is already total,

- chair offers vote on an unranked (by R_{t-1}) pair $x, y \in \mathcal{X}$
- each voter $i \in\{1, \ldots, I\}$ votes for either x or y
- winner is ranked above loser, and transitivity is imposed:

$$
R_{t}=\text { transitive closure of } \begin{cases}R_{t-1} \cup\{(x, y)\} & \text { if } x \text { won } \\ R_{t-1} \cup\{(y, x)\} & \text { if } y \text { won } .\end{cases}
$$

Why this protocol?

Our transitive protocol denies the chair arbitrary power:

- committee sovereignty:
if x beats y in a vote, then x is ranked above y.
- democratic legitimacy:
enough votes must be offered that every pair is linked by a chain of majorities.

Any protocol that denies the chair arbitrary power is exactly the transitive protocol with restrictions on which unranked pairs the chair can offer.
(back to slide 3)

A characterisation of our protocol

A ballot is a set $B \subseteq \mathcal{X}$ of ≥ 2 alternatives.
An election is (B, V) where B is a ballot and $V:\{1, \ldots, I\} \rightarrow B$. A history is a sequence of elections with distinct ballots.

Write $h \sqsubseteq h^{\prime}$ iff h is a truncation of h^{\prime}. For a set \mathcal{H} of histories, write $h \in \tau(\mathcal{H})$ (' h is terminal') iff $h \in \mathcal{H}$ and there is no $h^{\prime} \sqsupset h$ in \mathcal{H}.

A protocol is a set \mathcal{H} of ('permitted') histories s.t.

- $h \sqsubseteq h^{\prime} \in \mathcal{H}$ implies $h \in \mathcal{H}$, and
- $\left(\left(B_{1}, V_{1}\right), \ldots,\left(B_{t}, V_{t}\right)\right) \in \mathcal{H}$ implies $\left(\left(B_{1}, V_{1}\right), \ldots,\left(B_{t}, V_{t}^{\prime}\right)\right) \in \mathcal{H} \quad \forall V_{t}^{\prime}$ and a map ρ that assigns a ranking to each terminal $h \in \mathcal{H}$.
(\mathcal{H}, ρ) is a restriction of $\left(\mathcal{H}^{\prime}, \rho^{\prime}\right)$ iff $\tau(\mathcal{H}) \subseteq \tau\left(\mathcal{H}^{\prime}\right)$ and $\rho=\left.\rho^{\prime}\right|_{\tau(\mathcal{H})}$.

A characterisation of our protocol

For a history $h=\left(\left(B_{t}, V_{t}\right)\right)_{t=1}^{T}$,

- write $x S^{h} y$ iff $x, y \in B_{t}$ and $\left|\left\{i: V_{t}(i)=x\right\}\right| \geq\left|\left\{i: V_{t}(i)=y\right\}\right| \exists t$
- say that h gives the committee a say on x, y iff $\left\{z_{1}, z_{L}\right\}=\{x, y\}$ for some sequence $z_{1} S^{h} z_{2} S^{h} \cdots S^{h} z_{L}$.

Proposition.

A protocol is a restriction of our transitive protocol iff it satisfies
(i) binary ballots: for any $\left(\left(B_{t}, V_{t}\right)\right)_{t=1}^{T} \in \mathcal{H}$, we have $\left|B_{1}\right|=\cdots=\left|B_{T}\right|=2$.
(ii) committee sovereignty: at any terminal $h=\left(\left(B_{t}, V_{t}\right)\right)_{t=1}^{T} \in \mathcal{H}$, if $\left|\left\{i: V_{t}(i)=x\right\}\right|>I / 2$ and $y \in B_{t}, \quad$ then $x \rho(h) y$.
(iii) democratic legitimacy: every terminal $h \in \mathcal{H}$ gives the committee has a say on each pair of alternatives.

Counter-example to the converse of Lemma 1

$\mathcal{X}=\{\alpha, \beta, \gamma, \delta\}$ with $\alpha \succ \beta \succ \gamma \succ \delta$ and

The ranking $\alpha R \delta R \gamma R \beta \ldots$
(- is W-reachable: offer $\{\alpha, \delta\},\{\delta, \gamma\},\{\gamma, \beta\}$.)

- is W-unimprovable, since no other W-reachable ranking ranks α above β. (Because there's only one directed path in W from α to β.)
- is not W-efficient, since $\delta R \beta$.

Necessity of efficiency

non- W-efficient rankings feature sacrifices $(\delta R \beta$)
\ldots which may pay off $(\alpha R \beta) \Longrightarrow W$-unimprovable ranking
\ldots. or not \Longrightarrow non- W-unimprovable ranking.

In fact, any sacrifice can fail to pay off
\Longrightarrow inefficient strategies cannot be regret-free.

Theorem 2 tightness

The characterisation in Theorem 2 is tight in the following sense:

Proposition 1.

For any majority will W and W-reachable W-efficient ranking R, some regret-free strategy reaches R under W.

Thus for every majority will W,

$$
\begin{aligned}
& \{R: \exists \mathrm{RF} \text { strategy that reaches } R \text { under } W\} \\
= & \{R: R \text { is } W \text {-reachable and } W \text {-efficient }\}
\end{aligned}
$$

(\subseteq by Theorem $2, \supseteq$ by Proposition 1)

Formal definition of errors

Definition.
Let R be an incomplete ranking, and let $x \succ y$ be unranked.

(1) Offering $\{x, y\}$ for a vote misses an opportunity (at R) iff there is an alternative z s.t. $x \succ z \succ y$ and $y \not R z \not R x$.
(2) Offering $\{x, y\}$ for a vote takes a risk (at R) iff there is an alternative z s.t. either

$$
\begin{array}{llll}
-z \succ y, & x R z \quad \text { and } \quad y \not R z, & \text { or } \\
-x \succ z, & z R y \quad \text { and } \quad z \not R x .
\end{array}
$$

Theorem 3 tightness

Proposition 2.

After any error-free history,
there is a pair that can be offered without committing an error.

Yields tightness:
for any W and any sequence of pairs that is error-free under W, some regret-free strategy offers this sequence under W.
(back to slide 25)

Proof of Theorems $2 \& 3$

Avoids errors \Longrightarrow efficient: contra-positive.

- suppose σ not efficient \Longrightarrow under some W, reach $R \quad$ s.t. $\quad y R x \quad$ despite $\quad x \succ y$ and $\quad x W y$.
- must be due to unfavourable imposition of transitivity.
- argue that error-avoidance precludes unfavourable impositions of transitivity.

Proof of Theorems $2 \& 3$

Regret-free \Longrightarrow no errors: contra-positive.

- suppose σ erroneously offers $x \succ y$ under some W

$$
\Longrightarrow \exists W^{\prime} \text { s.t. } \quad \begin{cases}y R x & \text { for } R \text { reached by } \sigma \text { under } W^{\prime} \\ x R^{\prime} y & \text { for some other } W^{\prime} \text {-reachable } R^{\prime} .\end{cases}
$$

- carefully construct W^{\prime} and R^{\prime} so that every other pair z, w ranked 'right' by R also ranked 'right' by R '.

The (recursive) amendment procedure

Amendment procedure: pit $n-1$ against n, then pit the winner against $n-2$, then pit the winner against $n-3$, and so on. Call the winner of the final round the final winner.

Recursive amendment procedure (a.k.a. 'selection sort'):

- run the AP on $\{1, \ldots, n\}$; call the final winner y_{1}.
- run the AP on $\{1, \ldots, n\} \backslash\left\{y_{1}\right\} ;$ call the final winner y_{2}.
- ...

The resulting ranking is $y_{1} R y_{2} R \cdots R y_{n-1} R y_{n}$.

Proposition 3.

Recursive amendment and insertion sort are outcome-equivalent.

History-invariant voting

By using the majority will W, we implicitly assume (approximately) history-invariant voting.

- reasonable if voting is non-strategic or 'expressive'
- not unreasonable if voting is strategic.

Strategic voting

Each voter i has a preference \succ_{i} over alternatives, and prefers rankings more aligned with \succ_{i}.

A voter's strategy specifies how to vote at each history. The sincere strategy: vote for your favourite. History-invariant!

Ranking when chair [voters] use $\sigma\left[\sigma_{i}, \sigma_{-i}\right]$ denoted $R\left(\sigma, \sigma_{i}, \sigma_{-i}\right)$.

Definition.

A strategy σ_{i} is dominant iff for any alternative strategy σ_{i}^{\prime},
($\nexists)$ there exists no profile σ, σ_{-i} such that $R\left(\sigma, \sigma_{i}^{\prime}, \sigma_{-i}\right)$ is distinct from, and MAW \succ_{i} than, $R\left(\sigma, \sigma_{i}, \sigma_{-i}\right)$.
(\exists) there exists a profile σ, σ_{-i} such that $R\left(\sigma, \sigma_{i}, \sigma_{-i}\right)$ is distinct from, and MAW \succ_{i} than, $R\left(\sigma, \sigma_{i}^{\prime}, \sigma_{-i}\right)$.

Proposition 4.

The sincere strategy is (uniquely) dominant.

References I

Banks, J. S. (1985). Sophisticated voting outcomes and agenda control. Social Choice and Welfare, 1(4), 295-306. https://doi.org/10.1007/BF00649265
Black, D. (1958). The theory of committees and elections.
Cambridge University Press.
Copeland, A. (1951). A reasonable social welfare function [notes from University of Michigan seminar on applications of mathematics to the social sciences].
Daniels, H. E. (1969). Round-robin tournament scores.
Biometrika, 56(2), 295-299.
https://doi.org/10.2307/2334422
Farquharson, R. (1969). Theory of voting. Yale University Press.
Gershkov, A., Kleiner, A., Moldovanu, B., \& Shi, X. (2019). The art of compromising: Voting with interdependent values and the flag of the Weimar Republic [working paper, 9 Sep 2019].

References II

Gershkov, A., Moldovanu, B., \& Shi, X. (2017). Optimal voting rules. Review of Economic Studies, 84(2), 688-717. https://doi.org/10.1093/restud/rdw044
Gershkov, A., Moldovanu, B., \& Shi, X. (2019). Voting on multiple issues: What to put on the ballot? Theoretical Economics, 14(2), 555-596. https://doi.org/10.3982/TE3193
Gershkov, A., Moldovanu, B., \& Shi, X. (2020). Monotonic norms and orthogonal issues in multidimensional voting. Journal of Economic Theory, 189. https://doi.org/10.1016/j.jet.2020.105103
Kemeny, J. G. (1959). Mathematics without numbers. Dædalus, 88(4), 577-591.
Kendall, M. G. (1955). Further contributions to the theory of paired comparisons. Biometrics, 11(1), 43-62.
https://doi.org/10.2307/3001479

References III

Kleiner, A., \& Moldovanu, B. (2017). Content-based agendas and qualified majorities in sequential voting. American
Economic Review, 107(6), 1477-1506. https://doi.org/10.1257/aer.20160277
Miller, N. R. (1977). Graph-theoretical approaches to the theory of voting. American Journal of Political Science, 21(4), 769-803. https://doi.org/10.2307/2110736
Moon, J. W., \& Pullman, N. J. (1970). On generalized tournament matrices. SIAM Review, 12(3), 384-399. https://doi.org/10.1137/1012081
Ordeshook, P. C., \& Palfrey, T. R. (1988). Agendas, strategic voting, and signaling with incomplete information. American Journal of Political Science, 32(2), 441-466. https://doi.org/10.2307/2111131

References IV

Rubinstein, A. (1980). Ranking the participants in a tournament. SIAM Journal on Applied Mathematics, 38(1), 108-111. https://doi.org/10.1137/0138009
Schedel, H. (1493). Register Des buchs der Croniken und geschichten mit figure und pildnussen von anbegin der welt bis auf dise unsere Zeit (M. Wolgemut \& W. Pleydenwurff, Illustrators; G. Alt, Trans.). Anton Koberger.
Slater, P. (1961). Inconsistencies in a schedule of paired comparisons. Biometrika, 48(3-4), 303-312. https://doi.org/10.1093/biomet/48.3-4.303
Slutzki, G., \& Volij, O. (2005). Ranking participants in generalized tournaments. International Journal of Game Theory, 33(2), 255-270. https://doi.org/10.1007/s00182-005-0197-5

References V

Wei, T.-H. (1952). Algebraic foundations of ranking theory (doctoral thesis). University of Cambridge.
Young, H. P. (1986). Optimal ranking and choice from pairwise comparisons. In B. Grofman \& G. Owen (Eds.), Information pooling and group decision making (pp. 113-122). JAI Press.
Young, H. P. (1988). Condorcet's theory of voting. American
Political Science Review, 82(4), 1231-1244. https://doi.org/10.2307/1961757
Young, H. P., \& Levenglick, A. (1978). A consistent extension of Condorcet's election principle. SIAM Journal on Applied Mathematics, 35(2), 285-300. https://doi.org/10.1137/0135023

References VI

Zermelo, E. (1929). Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 29(1), 436-460. https://doi.org/10.1007/BF01180541

