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Ranking by committee

Many organisations governed by committee. Typically

– committee sets priorities

– day-to-day decisions delegated to executives.

Simple example: hiring.

– uncertainty about which candidates would accept offer

– hiring committee ranks the candidates

– delegates task of extending offers (to 1st; to 2nd; etc.)

For lack of info, committee doesn’t pick an alternative;

instead ranks the alternatives.

2



Agenda-setting

Majority will may contain (Condorcet) cycles:

Alexander

BenedictGregory

Committee’s chair chooses order of pairwise votes.

Transitivity imposed.
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Uncertainty

Chair does not know the majority will, W .
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Regret-free strategies

Question: how much influence can chair exert? & how?

Answer: ∃ regret-free strategy:

reaches a ranking ‘as good as’ the full-info optimum,

whatever the majority will.

Seek to understand RF qualitatively:

– what do RF strategies have in common?

– what distinguishes them from each other?
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Do RF strategies exist?

What do RF strategies have in common?

How do RF strategies differ?
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Preferences

Chair has preference � over alternatives.

Ranking R is more aligned with � than R′
iff whenever x � y and x R′ y, also x R y.

Chair prefers more aligned rankings . . . and that’s all.

Hiring: more aligned ⇐⇒ hires �-better candidate at
every realisation of uncertainty.
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Example

α

βγ
and α � β � γ

W -reachable rankings:
β R α R γ, α R′ γ R′ β and γ R′′ β R′′ α.

R and R′ are more aligned with � than R′′
and are incomparable to each other.

=⇒ R and R′ cannot be W -feasibly improved upon.
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Regret-free strategies

A ranking is W -unimprovable iff no other ranking is both
(i) reachable under W and
(ii) more aligned with �.

With perfect knowledge of W ,
W -unimprovability is the strongest optimality concept.

A regret-free strategy
reaches a W -unimprovable ranking under every W .
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Efficiency

A W -efficient ranking
is one that ranks x above y whenever both x � y and x W y.

Example:

α

βγ
and α � β � γ

W -efficient rankings: � itself, β R α R γ and α R′ γ R′ β.

Definition.
A strategy is efficient iff under any majority will W ,
it reaches a W -efficient ranking.
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W -efficiency implies W -unimprovability

Lemma 1.
For any majority will W ,
a W -efficient ranking is W -unimprovable.

Corollary.
Any efficient strategy is regret-free.
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Intuition for Lemma 1
Given W , call a pair x � y

{
an agreement pair if x W y

a disagreement pair if y W x.

Efficiency: rank every agreement pair ‘right’.

Disagreement pairs can be ranked ‘right’ only via transitivity.

Example:

α

βγ
and α � β � γ

W -efficient β R α R γ:
{
α, β voted on =⇒ ranked ‘wrong’
β, γ not voted on; ranked ‘right’.

To improve, must refrain from vote on α, β
=⇒ vote on β, γ =⇒ rank this pair ‘wrong’.
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Proof of Lemma 1
Fix W , W -efficient R, and W -reachable R′ 6= R.
We’ll show that R′ is not MAW � than R.

Since R′ 6= R, ∃ alternatives x, y such that x R′ y and y R x.
Enumerate alternatives that R′ ranks between x and y as

x = z1 R
′ z2 R

′ · · · R′ zN = y.

Since R′ is W -reachable, must have z1 W z2 W · · ·W zN .

There has to be n < N at which zn+1 R zn,
else we’d have x R y by transitivity of R.

It must be that zn+1 � zn,
else we’d have zn R zn+1 by zn W zn+1 and W -efficiency of R.

So (zn, zn+1) is ranked ‘right’ by R and ‘wrong’ by R′
=⇒ R′ is not MAW � than R. �
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Preliminaries

Do RF strategies exist?

What do RF strategies have in common?

How do RF strategies differ?
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Insertion sort

Label the alternatives X ≡ {1, . . . , n} so that 1 � · · · � n.

Insertion sort strategy: for each k ∈ {n− 1, . . . , 1},

– totally rank {k + 1, . . . , n}

(write xk+1 R · · · R xn, where {xk+1, . . . , xn} ≡ {k+ 1, . . . , n})

– ‘insert’ k into {k + 1, . . . , n}:

pit k against the highest-ranked (xk+1);
then (if k lost) pit k against the 2nd-highest-ranked (xk+2);
. . .
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offer β vs γ

β R γ
↪→ offer α vs β

γ R β
↪→ offer α vs γ

α R β R γ
β R α & β R γ
↪→ offer α vs γ α R γ R β

γ R α & γ R β
↪→ offer α vs β

β R α R γ β R γ R α γ R α R β γ R β R α

β W γ γ W β

α W β β W α α W γ γ W α

α W γ γ W α α W β β W α

α � β � γ
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Insertion sort is regret-free

Theorem 1.
The insertion-sort strategy is efficient, hence regret-free.
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Proof of Theorem 1
Fix W ; let R be ranking reached by IS under W .
Fix x, y with x � y and x W y; must show that x R y.

Enumerate all alternatives �-worse than x as z1 R · · · R zK .
Note that zk = y for some k ≤ K.

By definition of IS,
x is pitted against z1, z2, . . . in turn until it wins a vote.

– if x loses against z1, . . . , zk−1,
then it is pitted against zk = y and wins (since x W y)
=⇒ x R y.

– if x wins against z` for ` < k,
then x R z` R · · · R zk = y
=⇒ x R y (by transitivity of R). �
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What (other) strategies are regret-free?

We’ve shown that RF strategies exist.

What do RF strategies have in common?

⇐⇒ qualitatively, what does RF-ness require?
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Characterisation of outcomes

Recall that W -efficiency =⇒ W -unimprovability (Lemma 1).

The converse is false:
a W -unimprovable ranking need not be W -efficient.

(counter-example: slide 38)

But only efficiency ensures unimprovability robustly across W s:

Theorem 2.
A strategy is regret-free iff it is efficient.

(tightness: slide 40)
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offer β vs γ

β R γ
↪→ offer α vs β

γ R β
↪→ offer α vs γ

α R β R γ
β R α & β R γ
↪→ offer α vs γ α R γ R β

γ R α & γ R β
↪→ offer α vs β

β R α R γ β R γ R α γ R α R β γ R β R α

β W γ γ W β

α W β β W α α W γ γ W α

α W γ γ W α α W β β W α

α � β � γ
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Characterisation of behaviour

Theorem 3.
A strategy is regret-free iff
it never misses an opportunity or takes a risk.

(formal definitions: slide 41) (tightness: slide 42)
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Proof of Theorems 2 & 3

efficient

avoids
errors

regret-
free

Lemma 1

(details: slide 43)
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Reverse insertion sort

Label the alternatives X ≡ {1, . . . , n} so that 1 � · · · � n.

Reverse insertion sort strategy: for each k ∈ {2, . . . , n},

– totally rank {1, . . . , k − 1}

(write x1 R · · · R xk−1, where {x1, . . . , xk−1} ≡ {1, . . . , k − 1})

– ‘insert’ k into {1, . . . , k − 1}:

pit k against the lowest-ranked (xk−1);
then (if k won) pit k against the 2nd-lowest-ranked (xk−2);
. . .

Reverse IS is efficient (by Theorem-1 argument)
=⇒ regret-free. (by Lemma 1)
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IS vs. reverse IS

Example:

α

βγ
and α � β � γ

W -reachable, W -efficient rankings:

β R α R γ and α R′ γ R′ β.

Reverse insertion sort reaches R. Insertion sort reaches R′.

Prioritisation: ‘right’ ranking of
{
β, γ for reverse IS
α, β for IS.
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Prioritisation

Every RF strategy ranks agreement pairs ‘right’. (Theorem 2)
(x � y & x W y)

Disagreement pairs:

– some ranked by vote =⇒ bad.

– others by impositions of transitivity
↪→ favourable ones! (Theorem 3)

=⇒ good.

– trade-off: to rank one pair by transitivity,
must offer votes on others.

=⇒ RF strategies differ in which
favourable impositions of transitivity they exploit.
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How does IS prioritise?

Label the alternatives X ≡ {1, . . . , n} so that 1 � · · · � n.

IS leaves 1 for last: ranks {2, . . . , n}, then ‘inserts’ 1.

↪→ maximises favourable impositions of transitivity involving 1.

Subject to that, IS leaves 2 for last.
Subject to that, IS leaves 3 for last. etc.

Suggests lexicographic prioritisation:
among all strategies, IS optimises position of 1;
among such strategies, it optimises position of 2; etc.
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Lexicographic prioritisation

For alternative x, strategy σ and majority will W ,
write Rσ(W ) for ranking reached under σ and W , and

Nσ
x (W ) := |{y ∈ X : x � y and x Rσ(W ) y}|.

Definition.
Given x ∈ X , σ is better for x than σ′ iff
|{W : Nσ

x (W ) ≥ k}| ≥ |{W : Nσ′
x (W ) ≥ k}| ∀k ∈ {1, . . . , n−1}.

If σ ∈ Σ is better for x than each ∈ Σ, it is best for x among Σ.

Theorem 4.
A strategy is outcome-equivalent to insertion sort iff
among all strategies, it is best for 1;
among such strategies, it is best for 2; and so on.
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Interaction

Write Rt for what has been decided by the end of period t.
(A proto-ranking: an irreflexive, total & transitive relation on X .)

Initially, nothing is decided: R0 = ∅.

In each period t, unless Rt−1 is already total,

– chair offers vote on an unranked (by Rt−1) pair x, y ∈ X

– each voter i ∈ {1, . . . , I} votes for either x or y

– winner is ranked above loser, and transitivity is imposed:

Rt = transitive closure of
{
Rt−1 ∪{(x, y)} if x won
Rt−1 ∪{(y, x)} if y won.

(back to slide 3)
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Why this protocol?

Our transitive protocol denies the chair arbitrary power:

– committee sovereignty:
if x beats y in a vote, then x is ranked above y.

– democratic legitimacy:
enough votes must be offered that
every pair is linked by a chain of majorities.

Any protocol that denies the chair arbitrary power
is exactly the transitive protocol
with restrictions on which unranked pairs the chair can offer.

(back to slide 3)
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A characterisation of our protocol

A ballot is a set B ⊆ X of ≥ 2 alternatives.
An election is (B, V ) where B is a ballot and V : {1, . . . , I} → B.
A history is a sequence of elections with distinct ballots.

Write h v h′ iff h is a truncation of h′. For a set H of histories,
write h ∈ τ(H) (‘h is terminal’) iff h ∈ H and there is no h′ A h in H.

A protocol is a set H of (‘permitted’) histories s.t.

– h v h′ ∈ H implies h ∈ H, and
– ((B1, V1), . . . , (Bt, Vt)) ∈ H implies ((B1, V1), . . . , (Bt, V

′
t )) ∈ H ∀V ′

t

and a map ρ that assigns a ranking to each terminal h ∈ H.

(H, ρ) is a restriction of (H′, ρ′) iff τ(H) ⊆ τ(H′) and ρ = ρ′|τ(H).

36



A characterisation of our protocol
For a history h = ((Bt, Vt))T

t=1,

– write x Sh y iff x, y ∈ Bt and |{i : Vt(i) = x}| ≥ |{i : Vt(i) = y}| ∃t

– say that h gives the committee a say on x, y iff
{z1, zL} = {x, y} for some sequence z1 S

h z2 S
h · · · Sh zL.

Proposition.
A protocol is a restriction of our transitive protocol iff it satisfies
(i) binary ballots: for any ((Bt, Vt))Tt=1 ∈ H,

we have |B1| = · · · = |BT | = 2.
(ii) committee sovereignty: at any terminal h = ((Bt, Vt))Tt=1 ∈ H,

if |{i : Vt(i) = x}| > I/2 and y ∈ Bt, then x ρ(h) y.
(iii) democratic legitimacy: every terminal h ∈ H

gives the committee has a say on each pair of alternatives.

(back to slide 3)
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Counter-example to the converse of Lemma 1
X = {α, β, γ, δ} with α � β � γ � δ and

α

β

γ

δ

The ranking α R δ R γ R β. . .
(– is W -reachable: offer {α, δ}, {δ, γ}, {γ, β}.)
– is W -unimprovable,
since no other W -reachable ranking ranks α above β.
(Because there’s only one directed path in W from α to β.)

– is not W -efficient, since δ R β.

(back to slide 23)
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Necessity of efficiency

α

β

γ

δ and α � β � γ � δ.

non-W -efficient rankings feature sacrifices (δ R β)

. . . which may pay off (α R β) =⇒ W -unimprovable ranking

. . . or not =⇒ non-W -unimprovable ranking.

In fact, any sacrifice can fail to pay off
=⇒ inefficient strategies cannot be regret-free.

(back to slide 23)
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Theorem 2 tightness

The characterisation in Theorem 2 is tight in the following sense:

Proposition 1.
For any majority will W and W -reachable W -efficient ranking R,
some regret-free strategy reaches R under W .

Thus for every majority will W ,

{R : ∃ RF strategy that reaches R under W}
= {R : R is W -reachable and W -efficient}

(⊆ by Theorem 2, ⊇ by Proposition 1)

(back to slide 23)
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Formal definition of errors

Definition.
Let R be an incomplete ranking, and let x � y be unranked.( an irreflexive &

transitive relation

)
(1) Offering {x, y} for a vote misses an opportunity (at R) iff

there is an alternative z s.t. x � z � y and y 6R z 6R x.

(2) Offering {x, y} for a vote takes a risk (at R) iff
there is an alternative z s.t. either

– z � y, x R z and y 6R z, or
– x � z, z R y and z 6R x.

(back to slide 25)
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Theorem 3 tightness

Proposition 2.
After any error-free history,
there is a pair that can be offered without committing an error.

Yields tightness:
for any W and any sequence of pairs that is error-free under W ,
some regret-free strategy offers this sequence under W .

(back to slide 25)
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Proof of Theorems 2 & 3
efficient

avoids
errors

regret-
free

Lemma 1

Avoids errors =⇒ efficient: contra-positive.

– suppose σ not efficient =⇒ under some W ,
reach R s.t. y R x despite x � y and x W y.

– must be due to unfavourable imposition of transitivity.

– argue that error-avoidance
precludes unfavourable impositions of transitivity.
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Proof of Theorems 2 & 3
efficient

avoids
errors

regret-
free

Lemma 1

Regret-free =⇒ no errors: contra-positive.

– suppose σ erroneously offers x � y under some W

=⇒ ∃W ′ s.t.
{
y R x for R reached by σ under W ′

x R′ y for some other W ′-reachable R′.

– carefully construct W ′ and R′ so that
every other pair z, w ranked ‘right’ by R

also ranked ‘right’ by R′.

(back to slide 26)
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The (recursive) amendment procedure
Amendment procedure: pit n− 1 against n, then pit the winner
against n− 2, then pit the winner against n− 3, and so on.
Call the winner of the final round the final winner.

Recursive amendment procedure (a.k.a. ‘selection sort’):
– run the AP on {1, . . . , n}; call the final winner y1.
– run the AP on {1, . . . , n} \ {y1}; call the final winner y2.
– . . .
The resulting ranking is y1 R y2 R · · · R yn−1 R yn.

Proposition 3.
Recursive amendment and insertion sort are outcome-equivalent.

(back to slide 32)

44



History-invariant voting

By using the majority will W , we implicitly assume
(approximately) history-invariant voting.

– reasonable if voting is non-strategic or ‘expressive’

– not unreasonable if voting is strategic.
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Strategic voting
Each voter i has a preference �i over alternatives,
and prefers rankings more aligned with �i.

A voter’s strategy specifies how to vote at each history.
The sincere strategy: vote for your favourite. History-invariant!

Ranking when chair [voters] use σ [σi, σ−i] denoted R(σ, σi, σ−i).

Definition.
A strategy σi is dominant iff for any alternative strategy σ′i,
(@) there exists no profile σ, σ−i such that R(σ, σ′i, σ−i)

is distinct from, and MAW �i than, R(σ, σi, σ−i).
(∃) there exists a profile σ, σ−i such that R(σ, σi, σ−i)

is distinct from, and MAW �i than, R(σ, σ′i, σ−i).

Proposition 4.
The sincere strategy is (uniquely) dominant.

(back to slide 3) 46
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